Poster abstract: Information-maximizing data collection in social sensing using named-data

Shiguang Wang, T. Abdelzaher, S. Gajendran, Ajith Herga, Sachin Kulkarni, Shen Li, Hengchang Liu, C. Suresh, Abhishek Sreenath, William Dron, Alice Leung, R. Govindan, J. P. Hancock
{"title":"Poster abstract: Information-maximizing data collection in social sensing using named-data","authors":"Shiguang Wang, T. Abdelzaher, S. Gajendran, Ajith Herga, Sachin Kulkarni, Shen Li, Hengchang Liu, C. Suresh, Abhishek Sreenath, William Dron, Alice Leung, R. Govindan, J. P. Hancock","doi":"10.1109/IPSN.2014.6846774","DOIUrl":null,"url":null,"abstract":"This poster describes the information funnel, a data collection protocol for social sensing that maximizes a measure of delivered information utility. We argue that information-centric networking (ICN), where data objects are named instead of hosts, is especially suited for utility-maximizing transport in resource-constrained environments, because data names can expose similarities between named objects that can be leveraged for minimizing redundancy, hence maximizing utility. We implement the funnel on the recently proposed named-data networking (NDN) stack, an instance of ICN. With proper name space design, a protocol prioritizes transmission of data items over bottlenecks to maximize information utility, with very weak assumptions on the utility function. This prioritization is achieved merely by comparing data names, without knowing application-level name semantics, which makes it generalizable across a wide range of applications. Evaluation results show the information funnel improves the utility of the collected data objects compared with state-of-the-art solutions.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPSN.2014.6846774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This poster describes the information funnel, a data collection protocol for social sensing that maximizes a measure of delivered information utility. We argue that information-centric networking (ICN), where data objects are named instead of hosts, is especially suited for utility-maximizing transport in resource-constrained environments, because data names can expose similarities between named objects that can be leveraged for minimizing redundancy, hence maximizing utility. We implement the funnel on the recently proposed named-data networking (NDN) stack, an instance of ICN. With proper name space design, a protocol prioritizes transmission of data items over bottlenecks to maximize information utility, with very weak assumptions on the utility function. This prioritization is achieved merely by comparing data names, without knowing application-level name semantics, which makes it generalizable across a wide range of applications. Evaluation results show the information funnel improves the utility of the collected data objects compared with state-of-the-art solutions.
海报摘要:使用命名数据的社会传感信息最大化数据收集
这张海报描述了信息漏斗,这是一种用于社会感知的数据收集协议,可以最大限度地提高传递信息的效用。我们认为,以信息为中心的网络(ICN),其中以数据对象而不是主机命名,特别适合在资源受限的环境中实现效用最大化的传输,因为数据名称可以暴露命名对象之间的相似性,可以利用这些相似性来最小化冗余,从而最大化效用。我们在最近提出的命名数据网络(NDN)堆栈(ICN的一个实例)上实现了漏斗。通过适当的名称空间设计,协议将数据项的传输优先于瓶颈,以最大化信息效用,对效用函数的假设非常弱。这种优先级只需要通过比较数据名称来实现,而不需要了解应用程序级别的名称语义,这使得它可以在广泛的应用程序中推广。评估结果表明,与最先进的解决方案相比,信息漏斗提高了收集的数据对象的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信