{"title":"Decentralized Max-Min Resource Allocation for Monotonic Utility Functions","authors":"S. Wu, Xi Peng, Guangjian Tian","doi":"10.1109/INFOCOMWKSHPS51825.2021.9484502","DOIUrl":null,"url":null,"abstract":"We consider a decentralized solution to max-min resource allocation for a multi-agent system. Limited resources are allocated to the agents in a network, each of which has a utility function monotonically increasing in its allocated resource. We aim at finding the allocation that maximizes the minimum utility among all agents. Although the problem can be easily solved with a centralized algorithm, developing a decentralized algorithm in absence of a central coordinator is challenging. We show that the decentralized max-min resource allocation problem can be nontrivially transformed to a canonical decentralized optimization. By using the gradient tracking technique in the decentralized optimization, we develop a decentralized algorithm to solve the max-min resource allocation. The algorithm converges to a solution at a linear convergence rate (in a log-scale) for strongly monotonic and Lipschitz continuous utility functions. Moreover, the algorithm is privacy-preserving since the agents only transmit encoded utilities and allocated resource to their intermediate neighbors. Numerical simulations show the advantage of our problem reformulation and validate the theoretical convergence result.","PeriodicalId":109588,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We consider a decentralized solution to max-min resource allocation for a multi-agent system. Limited resources are allocated to the agents in a network, each of which has a utility function monotonically increasing in its allocated resource. We aim at finding the allocation that maximizes the minimum utility among all agents. Although the problem can be easily solved with a centralized algorithm, developing a decentralized algorithm in absence of a central coordinator is challenging. We show that the decentralized max-min resource allocation problem can be nontrivially transformed to a canonical decentralized optimization. By using the gradient tracking technique in the decentralized optimization, we develop a decentralized algorithm to solve the max-min resource allocation. The algorithm converges to a solution at a linear convergence rate (in a log-scale) for strongly monotonic and Lipschitz continuous utility functions. Moreover, the algorithm is privacy-preserving since the agents only transmit encoded utilities and allocated resource to their intermediate neighbors. Numerical simulations show the advantage of our problem reformulation and validate the theoretical convergence result.