Generalization Performance of ERM Algorithm with Geometrically Ergodic Markov Chain Samples

Jie Xu, Bin Zou, Jianjun Wang
{"title":"Generalization Performance of ERM Algorithm with Geometrically Ergodic Markov Chain Samples","authors":"Jie Xu, Bin Zou, Jianjun Wang","doi":"10.1109/ICNC.2009.184","DOIUrl":null,"url":null,"abstract":"The previous works describing the generalization ability of learning algorithms are based on independent and identically distributed (i.i.d.) samples. In this paper we go far beyond this classical framework by studying the learning performance of the Empirical Risk Minimization (ERM) algorithm with Markov chain samples. We obtain the bound on the rate of uniform convergence of the ERM algorithm with geometrically ergodic Markov chain samples, as an application of our main result we establish the bounds on the generalization performance of the ERM algorithm, and show that the ERM algorithm with geometrically ergodic Markov chain samples is consistent. These results obtained in this paper extend the previously known results of i.i.d. observations to the case of Markov dependent samples.","PeriodicalId":235382,"journal":{"name":"2009 Fifth International Conference on Natural Computation","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2009.184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The previous works describing the generalization ability of learning algorithms are based on independent and identically distributed (i.i.d.) samples. In this paper we go far beyond this classical framework by studying the learning performance of the Empirical Risk Minimization (ERM) algorithm with Markov chain samples. We obtain the bound on the rate of uniform convergence of the ERM algorithm with geometrically ergodic Markov chain samples, as an application of our main result we establish the bounds on the generalization performance of the ERM algorithm, and show that the ERM algorithm with geometrically ergodic Markov chain samples is consistent. These results obtained in this paper extend the previously known results of i.i.d. observations to the case of Markov dependent samples.
几何遍历马尔可夫链样本的ERM算法的泛化性能
以前描述学习算法泛化能力的工作是基于独立和同分布(i.i.d)样本。在本文中,我们通过研究具有马尔可夫链样本的经验风险最小化(ERM)算法的学习性能,远远超出了这一经典框架。我们得到了具有几何遍历马尔可夫链样本的ERM算法的一致收敛速率的界,作为我们的主要成果的应用,我们建立了ERM算法泛化性能的界,并证明了具有几何遍历马尔可夫链样本的ERM算法是一致的。本文所得到的结果将以前已知的i.i.d观测结果推广到马尔可夫相关样本的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信