Predicting the Yield of Spring Maize Based on an Optimized Wavelet Neural Network with an Improved Double-Chain Quantum Genetic Algorithm

W. Bai, Lin Fanghua, Huang Yan, Meng Yan
{"title":"Predicting the Yield of Spring Maize Based on an Optimized Wavelet Neural Network with an Improved Double-Chain Quantum Genetic Algorithm","authors":"W. Bai, Lin Fanghua, Huang Yan, Meng Yan","doi":"10.14257/ijhit.2017.10.2.13","DOIUrl":null,"url":null,"abstract":"To overcome the shortcomings of the traditional wavelet neural network, an improved double-chain quantum genetic algorithm is used to optimize its parameters. This paper presents a prediction model for the optimized wavelet neural network that is applied to spring maize yields in the northeast of China. The results show that the coupled model is better than the traditional wavelet neural network, and achieves good prediction performance for the spring maize yield.","PeriodicalId":170772,"journal":{"name":"International Journal of Hybrid Information Technology","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hybrid Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/ijhit.2017.10.2.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To overcome the shortcomings of the traditional wavelet neural network, an improved double-chain quantum genetic algorithm is used to optimize its parameters. This paper presents a prediction model for the optimized wavelet neural network that is applied to spring maize yields in the northeast of China. The results show that the coupled model is better than the traditional wavelet neural network, and achieves good prediction performance for the spring maize yield.
基于改进双链量子遗传算法的优化小波神经网络春玉米产量预测
为克服传统小波神经网络的不足,采用改进的双链量子遗传算法对其参数进行优化。本文提出了一种用于东北地区春玉米产量预测的优化小波神经网络模型。结果表明,该耦合模型优于传统的小波神经网络,对春玉米产量具有较好的预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信