Robust Optimization of the Equity Momentum Strategy

Arco van Oord, M. Martens, H. K. van Dijk
{"title":"Robust Optimization of the Equity Momentum Strategy","authors":"Arco van Oord, M. Martens, H. K. van Dijk","doi":"10.2139/ssrn.1342405","DOIUrl":null,"url":null,"abstract":"Quadratic optimization for asset portfolios often leads to error maximization, with optimizers zooming in on large errors in the predicted inputs, that is, expected returns and risks. The consequence in most cases is a poor real-time performance. In this paper we show how to improve real-time performance of the popular equity momentum strategy with robust optimization in an empirical application involving 1500-2500 US stocks over the period 1963-2006. We also show that popular procedures like Bayes-Stein estimated expected returns, shrinking the covariance matrix and adding weight constraints fail in such a practical case.","PeriodicalId":201603,"journal":{"name":"Organizations & Markets eJournal","volume":"IM-25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizations & Markets eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1342405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quadratic optimization for asset portfolios often leads to error maximization, with optimizers zooming in on large errors in the predicted inputs, that is, expected returns and risks. The consequence in most cases is a poor real-time performance. In this paper we show how to improve real-time performance of the popular equity momentum strategy with robust optimization in an empirical application involving 1500-2500 US stocks over the period 1963-2006. We also show that popular procedures like Bayes-Stein estimated expected returns, shrinking the covariance matrix and adding weight constraints fail in such a practical case.
股票动量策略的稳健优化
资产组合的二次优化通常会导致误差最大化,优化器会放大预测输入中的大误差,即预期收益和风险。在大多数情况下,其结果是较差的实时性能。在本文中,我们展示了如何在涉及1963-2006年期间1500-2500只美国股票的实证应用中,通过稳健优化来提高流行的股票动量策略的实时性能。我们还表明,流行的程序,如贝叶斯-斯坦估计预期收益,缩小协方差矩阵和增加权重约束在这种实际情况下失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信