{"title":"Performance Evaluation of Feature Selection Algorithms Applied to Online Learning in Concept Drift Environments","authors":"M. B. D. Moraes, A. Gradvohl","doi":"10.5753/ENIAC.2018.4438","DOIUrl":null,"url":null,"abstract":"Data streams are transmitted at high speeds with huge volume and may contain critical information need processing in real-time. Hence, to reduce computational cost and time, the system may apply a feature selection algorithm. However, this is not a trivial task due to the concept drift. In this work, we show that two feature selection algorithms, Information Gain and Online Feature Selection, present lower performance when compared to classification tasks without feature selection. Both algorithms presented more relevant results in one distinct scenario each, showing final accuracies up to 14% higher. The experiments using both real and artificial datasets present a potential for using these methods due to their better adaptability in some concept drift situations.","PeriodicalId":152292,"journal":{"name":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ENIAC.2018.4438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Data streams are transmitted at high speeds with huge volume and may contain critical information need processing in real-time. Hence, to reduce computational cost and time, the system may apply a feature selection algorithm. However, this is not a trivial task due to the concept drift. In this work, we show that two feature selection algorithms, Information Gain and Online Feature Selection, present lower performance when compared to classification tasks without feature selection. Both algorithms presented more relevant results in one distinct scenario each, showing final accuracies up to 14% higher. The experiments using both real and artificial datasets present a potential for using these methods due to their better adaptability in some concept drift situations.