Optimized passive seismic interferometry for bedrock detection: A Singapore case study

Yunhuo Zhang, Y. Li, Heng Zhang, T. Ku
{"title":"Optimized passive seismic interferometry for bedrock detection: A Singapore case study","authors":"Yunhuo Zhang, Y. Li, Heng Zhang, T. Ku","doi":"10.1190/SEGAM2018-2988512.1","DOIUrl":null,"url":null,"abstract":"We present a case study of passive seismic interferometry in the city of Singapore to investigate the bedrock depth and to determine the optimal acquisition parameters. The ambient-noise field, dominated by urban traffic noise, is recorded passively for seismic interferometry. We demonstrate that the bedrock depth can be determined from ambient seismic noise within an error of 2 m compared with borehole logs. Both synthetic and field data analysis show that the optimal array size for the passive site investigation can be as short as 30 m with 6 vertical geophones, to resolve a 1-D shear wave velocity profile of 50m in depth. Convergence of the cross-correlograms shows that the minimum acquisition time for ambient-noise acquisition is about 15 mins in a typical working day. Success of this case study demonstrates that accurate nearsurface site investigation can be achieved with faster acquisition, fewer receivers and smaller acquisition footprint, all of which improve the efficiency particularly in a highly developed urban environment.","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEG Technical Program Expanded Abstracts 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/SEGAM2018-2988512.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We present a case study of passive seismic interferometry in the city of Singapore to investigate the bedrock depth and to determine the optimal acquisition parameters. The ambient-noise field, dominated by urban traffic noise, is recorded passively for seismic interferometry. We demonstrate that the bedrock depth can be determined from ambient seismic noise within an error of 2 m compared with borehole logs. Both synthetic and field data analysis show that the optimal array size for the passive site investigation can be as short as 30 m with 6 vertical geophones, to resolve a 1-D shear wave velocity profile of 50m in depth. Convergence of the cross-correlograms shows that the minimum acquisition time for ambient-noise acquisition is about 15 mins in a typical working day. Success of this case study demonstrates that accurate nearsurface site investigation can be achieved with faster acquisition, fewer receivers and smaller acquisition footprint, all of which improve the efficiency particularly in a highly developed urban environment.
基岩探测的优化被动地震干涉测量:新加坡案例研究
我们提出了一个新加坡城市被动地震干涉测量的案例研究,以调查基岩深度并确定最佳采集参数。在地震干涉测量中,以城市交通噪声为主的环境噪声场是被动记录的。我们证明,与钻孔测井相比,可以从环境地震噪声中确定基岩深度,误差在2米以内。综合和现场数据分析表明,被动现场调查的最佳阵列尺寸可短至30 m,配备6个垂直检波器,以解决50米深的一维横波速度剖面。交叉相关图的收敛表明,在典型工作日中,环境噪声的最小采集时间约为15分钟。该案例研究的成功表明,通过更快的采集速度、更少的接收器和更小的采集面积,可以实现准确的近地表站点调查,所有这些都提高了效率,特别是在高度发达的城市环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信