stealthML: Data-driven Malware for Stealthy Data Exfiltration

Key-whan Chung, Phuong Cao, Z. Kalbarczyk, Ravishankar K. Iyer
{"title":"stealthML: Data-driven Malware for Stealthy Data Exfiltration","authors":"Key-whan Chung, Phuong Cao, Z. Kalbarczyk, Ravishankar K. Iyer","doi":"10.1109/CSR57506.2023.10224946","DOIUrl":null,"url":null,"abstract":"The use of machine learning methods have been actively studied to detect and mitigate the consequences of malicious attacks. However, this sophisticated technology can become a threat when it falls into the wrong hands. This paper describes a new class of malware that employs machine learning to autonomously infer when and how to trigger an attack payload to maximize impact while minimizing attack traces. We designed, implemented, and demonstrated a smart malware that monitors the realtime network traffic flow of the victim system, analyzes the collected traffic data to forecast traffic and identify the most opportune time to trigger data extraction, and optimizes its strategy in planning the data exfiltration to minimize traces that might reveal the malware's presence.","PeriodicalId":354918,"journal":{"name":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Cyber Security and Resilience (CSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSR57506.2023.10224946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of machine learning methods have been actively studied to detect and mitigate the consequences of malicious attacks. However, this sophisticated technology can become a threat when it falls into the wrong hands. This paper describes a new class of malware that employs machine learning to autonomously infer when and how to trigger an attack payload to maximize impact while minimizing attack traces. We designed, implemented, and demonstrated a smart malware that monitors the realtime network traffic flow of the victim system, analyzes the collected traffic data to forecast traffic and identify the most opportune time to trigger data extraction, and optimizes its strategy in planning the data exfiltration to minimize traces that might reveal the malware's presence.
stealthML:数据驱动的恶意软件,用于隐形数据泄露
人们一直在积极研究机器学习方法的使用,以检测和减轻恶意攻击的后果。然而,这种复杂的技术一旦落入坏人之手,就会成为一种威胁。本文描述了一类新的恶意软件,它利用机器学习来自主推断何时以及如何触发攻击有效载荷,以最大限度地发挥影响,同时最大限度地减少攻击痕迹。我们设计、实现并演示了一种智能恶意软件,它可以监控受害者系统的实时网络流量,分析收集到的流量数据来预测流量,并确定触发数据提取的最合适时间,并优化其规划数据泄露的策略,以最大限度地减少可能暴露恶意软件存在的痕迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信