Boosting 3D Object Detection by Simulating Multimodality on Point Clouds

Wu Zheng, Ming-Hong Hong, Li Jiang, Chi-Wing Fu
{"title":"Boosting 3D Object Detection by Simulating Multimodality on Point Clouds","authors":"Wu Zheng, Ming-Hong Hong, Li Jiang, Chi-Wing Fu","doi":"10.1109/CVPR52688.2022.01327","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to sim-ulate features and responses that follow a multi-modality (LiDAR-image) detector. The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference. We design a novel framework to realize the approach: re-sponse distillation to focus on the crucial response samples and avoid most background samples; sparse-voxel distillation to learn voxel semantics and relations from the esti-mated crucial voxels; a fine-grained voxel-to-point distillation to better attend to features of small and distant objects; and instance distillation to further enhance the deep-feature consistency. Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors and even surpasses the baseline LiDAR-image detector on the key NDS metric, filling ~72% mAP gap be-tween the single- and multi-modality detectors.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.01327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to sim-ulate features and responses that follow a multi-modality (LiDAR-image) detector. The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference. We design a novel framework to realize the approach: re-sponse distillation to focus on the crucial response samples and avoid most background samples; sparse-voxel distillation to learn voxel semantics and relations from the esti-mated crucial voxels; a fine-grained voxel-to-point distillation to better attend to features of small and distant objects; and instance distillation to further enhance the deep-feature consistency. Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors and even surpasses the baseline LiDAR-image detector on the key NDS metric, filling ~72% mAP gap be-tween the single- and multi-modality detectors.
通过模拟点云上的多模态来增强三维目标检测
本文提出了一种新的方法,通过教它模拟多模态(激光雷达图像)探测器的特征和响应来增强单模态(激光雷达)3D物体探测器。该方法仅在训练单模态探测器时需要激光雷达图像数据,训练完成后,在推理时只需要激光雷达数据。我们设计了一种新的框架来实现该方法:响应蒸馏专注于关键响应样本,避免大多数背景样本;稀疏体素蒸馏,从估计的关键体素中学习体素语义和关系;一种细粒度的体素到点的蒸馏,可以更好地处理小物体和远处物体的特征;实例蒸馏进一步提高深度特征的一致性。在nuScenes数据集上的实验结果表明,我们的方法优于所有的SOTA激光雷达3D探测器,甚至在关键的NDS指标上超过了基线激光雷达图像探测器,填补了单模态和多模态探测器之间约72%的mAP缺口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信