Machine Learning-based Voltage Dip Measurement of Smart Energy Meter

J. Vora, Darshan Vekaria, S. Tanwar, Sudhanshu Tyagi
{"title":"Machine Learning-based Voltage Dip Measurement of Smart Energy Meter","authors":"J. Vora, Darshan Vekaria, S. Tanwar, Sudhanshu Tyagi","doi":"10.1109/PDGC.2018.8745738","DOIUrl":null,"url":null,"abstract":"In recent times, a huge amount of data is generated often termed as big data. Specifically, from the viewpoint of the smart grid paradigm, which contains information about various features in the grid. Motivated from the aforementioned points, in this paper, we introduce a novel concepts of big data and extend it to highlight its influence on the smart grid system. This study is focused on implementing existing approaches to analyse the data available, using the deep learning algorithms. An implementation is undertaken with its results analysed and thoroughly discussed to convey the effectiveness of the approaches. The space phasor model displays substantial information about the voltage dips and allows us to create a smart energy meter. The meter allows to have a minimalistic turn around time for analysis.","PeriodicalId":303401,"journal":{"name":"2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC.2018.8745738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In recent times, a huge amount of data is generated often termed as big data. Specifically, from the viewpoint of the smart grid paradigm, which contains information about various features in the grid. Motivated from the aforementioned points, in this paper, we introduce a novel concepts of big data and extend it to highlight its influence on the smart grid system. This study is focused on implementing existing approaches to analyse the data available, using the deep learning algorithms. An implementation is undertaken with its results analysed and thoroughly discussed to convey the effectiveness of the approaches. The space phasor model displays substantial information about the voltage dips and allows us to create a smart energy meter. The meter allows to have a minimalistic turn around time for analysis.
基于机器学习的智能电能表电压倾斜测量
近年来,产生了大量的数据,通常被称为大数据。具体来说,从智能电网范式的角度来看,它包含了关于电网各种特征的信息。基于上述几点,本文引入了一个新的大数据概念,并对其进行了扩展,以突出其对智能电网系统的影响。本研究的重点是实现现有的方法来分析可用的数据,使用深度学习算法。进行了一项执行工作,对其结果进行了分析和彻底讨论,以表明这些方法的有效性。空间相量模型显示有关电压下降的大量信息,并允许我们创建一个智能电能表。该仪表允许有一个极简的周转时间的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信