Battery-Free Camera Occupancy Detection System

Ali Saffari, Sin Yong Tan, Mohamad Katanbaf, Homagni Saha, Joshua R. Smith, S. Sarkar
{"title":"Battery-Free Camera Occupancy Detection System","authors":"Ali Saffari, Sin Yong Tan, Mohamad Katanbaf, Homagni Saha, Joshua R. Smith, S. Sarkar","doi":"10.1145/3469116.3470013","DOIUrl":null,"url":null,"abstract":"Occupancy detection systems are commonly equipped with high-quality cameras and a processor with high computational power to run detection algorithms. This paper presents a human occupancy detection system that uses battery-free cameras and a deep learning model implemented on a low-cost hub to detect human presence. Our low-resolution camera harvests energy from ambient light and transmits data to the hub using backscatter communication. We implement the state-of-the-art YOLOv5 network detection algorithm that offers high detection accuracy and fast inferencing speed on a Raspberry Pi 4 Model B. We achieve an inferencing speed of ~ 100ms per image and an overall detection accuracy of >90% with only 2GB CPU RAM on the Raspberry Pi. In the experimental results, we also demonstrate that the detection is robust to noise, illuminance, occlusion, and angle of depression.","PeriodicalId":162801,"journal":{"name":"Proceedings of the 5th International Workshop on Embedded and Mobile Deep Learning","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on Embedded and Mobile Deep Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469116.3470013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Occupancy detection systems are commonly equipped with high-quality cameras and a processor with high computational power to run detection algorithms. This paper presents a human occupancy detection system that uses battery-free cameras and a deep learning model implemented on a low-cost hub to detect human presence. Our low-resolution camera harvests energy from ambient light and transmits data to the hub using backscatter communication. We implement the state-of-the-art YOLOv5 network detection algorithm that offers high detection accuracy and fast inferencing speed on a Raspberry Pi 4 Model B. We achieve an inferencing speed of ~ 100ms per image and an overall detection accuracy of >90% with only 2GB CPU RAM on the Raspberry Pi. In the experimental results, we also demonstrate that the detection is robust to noise, illuminance, occlusion, and angle of depression.
无电池摄像头占用检测系统
占用检测系统通常配备高质量的摄像机和具有高计算能力的处理器来运行检测算法。本文介绍了一种人类占用检测系统,该系统使用无电池摄像头和在低成本中心上实现的深度学习模型来检测人类的存在。我们的低分辨率相机从环境光中收集能量,并通过反向散射通信将数据传输到集线器。我们在树莓派4模型b上实现了最先进的YOLOv5网络检测算法,该算法提供了高检测精度和快速推理速度。我们在树莓派上仅使用2GB CPU RAM就实现了每张图像~ 100ms的推理速度和>90%的总体检测精度。在实验结果中,我们还证明了该检测对噪声、照度、遮挡和凹陷角具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信