Vibration Analysis and Methods of Dry Friction Damping of Tubed Vortex Reducer

Siyuan Chen, Yanrong Wang, D. Wei, Yanbin Luo, S. Gao
{"title":"Vibration Analysis and Methods of Dry Friction Damping of Tubed Vortex Reducer","authors":"Siyuan Chen, Yanrong Wang, D. Wei, Yanbin Luo, S. Gao","doi":"10.1115/GT2020-14001","DOIUrl":null,"url":null,"abstract":"\n The tubed vortex reducer is a new structure of aero-engine, which is widely used in advanced large bypass ratio high performance turbofan engines. It is usually installed between the rear two-stage discs of the high-pressure compressor, and reduces the generation of free vortex by restricting the flow path of the cooling airflow, thereby reducing the pressure loss of the cooling airflow and improving the engine efficiency. In this paper, vibration analysis of tubed vortex reducer is carried out by experiments and numerical simulations. Using the finite element method, the natural vibration characteristics of the vortex reducer are calculated with ANSYS. The sensitivity analysis of the impact of design parameters on the vibration characteristics is carried out. In addition, the vibration test bench of the vortex reducer is set up, and the vibration test of the vortex reducer is conducted by means of frequency sweeping and hammer hitting respectively. The experimental results satisfactorily reproduce the simulation results. Then the theoretical model of dry friction damping of vortex reducer is established. Based on the dynamic model of the complex contact system composed of vortex reducer and damping sleeve, the relationship between energy dissipation in different directions is derived. And a method evaluating the performance of vibration reduction is presented for calculating its equivalent damping ratio. Finally, the influence of the key design parameters and different installation methods on the damping ratio is analyzed. Overall, this work can provide reference for vibration reduction design and optimization of vortex reducer.","PeriodicalId":186943,"journal":{"name":"Volume 11: Structures and Dynamics: Structural Mechanics, Vibration, and Damping; Supercritical CO2","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11: Structures and Dynamics: Structural Mechanics, Vibration, and Damping; Supercritical CO2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2020-14001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The tubed vortex reducer is a new structure of aero-engine, which is widely used in advanced large bypass ratio high performance turbofan engines. It is usually installed between the rear two-stage discs of the high-pressure compressor, and reduces the generation of free vortex by restricting the flow path of the cooling airflow, thereby reducing the pressure loss of the cooling airflow and improving the engine efficiency. In this paper, vibration analysis of tubed vortex reducer is carried out by experiments and numerical simulations. Using the finite element method, the natural vibration characteristics of the vortex reducer are calculated with ANSYS. The sensitivity analysis of the impact of design parameters on the vibration characteristics is carried out. In addition, the vibration test bench of the vortex reducer is set up, and the vibration test of the vortex reducer is conducted by means of frequency sweeping and hammer hitting respectively. The experimental results satisfactorily reproduce the simulation results. Then the theoretical model of dry friction damping of vortex reducer is established. Based on the dynamic model of the complex contact system composed of vortex reducer and damping sleeve, the relationship between energy dissipation in different directions is derived. And a method evaluating the performance of vibration reduction is presented for calculating its equivalent damping ratio. Finally, the influence of the key design parameters and different installation methods on the damping ratio is analyzed. Overall, this work can provide reference for vibration reduction design and optimization of vortex reducer.
管式减速器的振动分析及干摩擦阻尼方法
管状涡减速器是航空发动机的一种新型结构,广泛应用于先进的大涵道比高性能涡扇发动机。通常安装在高压压气机后两级盘之间,通过限制冷却气流的流道来减少自由涡的产生,从而减少冷却气流的压力损失,提高发动机效率。本文通过实验和数值模拟对管状减速器进行了振动分析。采用有限元法,利用ANSYS软件对旋涡减速器的自振特性进行了计算。进行了设计参数对振动特性影响的灵敏度分析。搭建了旋涡减速器振动试验台,分别采用扫频和锤击的方式对旋涡减速器进行了振动试验。实验结果较好地再现了仿真结果。然后建立了涡减速器干摩擦阻尼的理论模型。基于由减速器和阻尼套筒组成的复杂接触系统的动力学模型,推导了不同方向上的能量耗散关系。并提出了一种评估减振性能的等效阻尼比计算方法。最后,分析了关键设计参数和不同安装方式对阻尼比的影响。研究结果可为减速器的减振设计和优化提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信