Qunzhi Zhou, Sreedhar Natarajan, Yogesh L. Simmhan, V. Prasanna
{"title":"Semantic Information Modeling for Emerging Applications in Smart Grid","authors":"Qunzhi Zhou, Sreedhar Natarajan, Yogesh L. Simmhan, V. Prasanna","doi":"10.1109/ITNG.2012.150","DOIUrl":null,"url":null,"abstract":"Smart Grid modernizes power grid by integrating digital and information technologies. Millions of smart meters, intelligent appliances and communication infrastructures are under deployment allowing advanced IT applications to be developed to secure and manage power grid operations. Demand response (DR) is one such emerging application to optimize electricity demand by curtailing/shifting power load when peak load occurs. Existing DR approaches are mostly based on static plans such as pricing policies and load shedding schedules. However, improvements to power management applications rely on data emanating from existing and new information sources with the growth of Smart Grid information space. In particular, dynamic DR algorithms depend on information from smart meters that report interval-based power consumption measurement, HVAC systems that monitor buildings heat and humidity, and even weather forecast services. In order for emerging Smart Grid applications to take advantage of the diverse data influx, extensible information integration is required. In this paper, we develop an integrated Smart Grid information model using Semantic Web techniques and present case studies of using semantic information for dynamic DR. We show the semantic model facilitates information integration and knowledge representation for developing the next generation Smart Grid applications.","PeriodicalId":117236,"journal":{"name":"2012 Ninth International Conference on Information Technology - New Generations","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth International Conference on Information Technology - New Generations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNG.2012.150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69
Abstract
Smart Grid modernizes power grid by integrating digital and information technologies. Millions of smart meters, intelligent appliances and communication infrastructures are under deployment allowing advanced IT applications to be developed to secure and manage power grid operations. Demand response (DR) is one such emerging application to optimize electricity demand by curtailing/shifting power load when peak load occurs. Existing DR approaches are mostly based on static plans such as pricing policies and load shedding schedules. However, improvements to power management applications rely on data emanating from existing and new information sources with the growth of Smart Grid information space. In particular, dynamic DR algorithms depend on information from smart meters that report interval-based power consumption measurement, HVAC systems that monitor buildings heat and humidity, and even weather forecast services. In order for emerging Smart Grid applications to take advantage of the diverse data influx, extensible information integration is required. In this paper, we develop an integrated Smart Grid information model using Semantic Web techniques and present case studies of using semantic information for dynamic DR. We show the semantic model facilitates information integration and knowledge representation for developing the next generation Smart Grid applications.