Integrated segmentation and recognition of handwritten numerals: comparison of classification algorithms

Cheng-Lin Liu, H. Sako, H. Fujisawa
{"title":"Integrated segmentation and recognition of handwritten numerals: comparison of classification algorithms","authors":"Cheng-Lin Liu, H. Sako, H. Fujisawa","doi":"10.1109/IWFHR.2002.1030927","DOIUrl":null,"url":null,"abstract":"In integrated segmentation and recognition (ISR) of handwritten character strings, the underlying classifier is desired to be accurate in character classification and resistant to non-character patterns (also called garbage or outliers). This paper compares the performance of a number of statistical and neural classifiers in ISR. Each classifier has some variations depending on learning method: maximum likelihood estimation (MLE), discriminative learning (DL) under the minimum square error (MSE) or minimum classification error (MCE) criterion, or enhanced DL (EDL) with outlier samples. A heuristic pre-segmentation method is proposed to generate candidate cuts and character patterns. The methods were tested on the 5-digit Zip code images in CEDAR CDROM-1. The results show that training with outliers is crucial for neural classifiers in ISR. The best result was given by the learning quadratic discriminant function (LQDF) classifier.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In integrated segmentation and recognition (ISR) of handwritten character strings, the underlying classifier is desired to be accurate in character classification and resistant to non-character patterns (also called garbage or outliers). This paper compares the performance of a number of statistical and neural classifiers in ISR. Each classifier has some variations depending on learning method: maximum likelihood estimation (MLE), discriminative learning (DL) under the minimum square error (MSE) or minimum classification error (MCE) criterion, or enhanced DL (EDL) with outlier samples. A heuristic pre-segmentation method is proposed to generate candidate cuts and character patterns. The methods were tested on the 5-digit Zip code images in CEDAR CDROM-1. The results show that training with outliers is crucial for neural classifiers in ISR. The best result was given by the learning quadratic discriminant function (LQDF) classifier.
手写体数字的综合分割与识别:分类算法的比较
在手写体字符串的集成分割和识别(ISR)中,底层分类器需要准确的字符分类,并且能够抵抗非字符模式(也称为垃圾或异常值)。本文比较了ISR中几种统计分类器和神经分类器的性能。根据学习方法的不同,每个分类器都有一些变化:最大似然估计(MLE),最小平方误差(MSE)或最小分类误差(MCE)标准下的判别学习(DL),或带有离群样本的增强DL (EDL)。提出了一种启发式预分割方法来生成候选切口和字符模式。在CEDAR CDROM-1中的5位邮政编码图像上进行了测试。结果表明,异常值训练对ISR中的神经分类器至关重要。学习二次判别函数(LQDF)分类器给出了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信