Congestion load balancing game with losses

Babacar Toure, S. Paturel, E. Altman
{"title":"Congestion load balancing game with losses","authors":"Babacar Toure, S. Paturel, E. Altman","doi":"10.1109/WINCOM50532.2020.9272491","DOIUrl":null,"url":null,"abstract":"We study the symmetric version of the load balancing game introduced by H. Kameda. We consider a non-splittable atomic game with lossy links. Thus costs are not additive and flow is not conserved (total flow entering a link is greater than the flow leaving it). We show that there is no unique equilibrium in the game. We identify several symmetric equilibria and show how the number of equilibria depends on the problem's parameters. We compute the globally optimal solution and compare its performance to the equilibrium. We finally identify the Kameda paradox which was introduced initially in networks without losses.","PeriodicalId":283907,"journal":{"name":"2020 8th International Conference on Wireless Networks and Mobile Communications (WINCOM)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Wireless Networks and Mobile Communications (WINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WINCOM50532.2020.9272491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the symmetric version of the load balancing game introduced by H. Kameda. We consider a non-splittable atomic game with lossy links. Thus costs are not additive and flow is not conserved (total flow entering a link is greater than the flow leaving it). We show that there is no unique equilibrium in the game. We identify several symmetric equilibria and show how the number of equilibria depends on the problem's parameters. We compute the globally optimal solution and compare its performance to the equilibrium. We finally identify the Kameda paradox which was introduced initially in networks without losses.
具有损失的拥塞负载平衡游戏
我们研究了H. Kameda引入的负载平衡游戏的对称版本。我们考虑一个具有有损链接的不可分原子对策。因此,成本不是附加的,流量也不是守恒的(进入一个环节的总流量大于离开这个环节的总流量)。我们证明了在这个博弈中不存在唯一的均衡。我们确定了几个对称均衡,并说明了均衡的数量如何依赖于问题的参数。我们计算了全局最优解,并将其性能与均衡进行了比较。我们最终确定了最初在无损失网络中引入的Kameda悖论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信