{"title":"An Improved Tool for Detection of XSS Attacks by Combining CNN with LSTM","authors":"Caio Lente, R. Hirata Jr., D. Batista","doi":"10.5753/sbseg_estendido.2021.17333","DOIUrl":null,"url":null,"abstract":"Cross-Site Scripting (XSS) is still a significant threat to web applications. By combining Convolutional Neural Networks (CNN) with Long ShortTerm Memory (LSTM) techniques, researchers have developed a deep learning system called 3C-LSTM that achieves upwards of 99.4% accuracy when predicting whether a new URL corresponds to a benign locator or an XSS attack. This paper improves on 3C-LSTM by proposing different network architectures and validation strategies and identifying the optimal structure for a more efficient, yet similarly accurate, version of 3C-LSTM. The authors identify larger batch sizes, smaller inputs, and cross-validation removal as modifications to achieve a speedup of around 3.9 times in the training step.","PeriodicalId":102643,"journal":{"name":"Anais Estendidos do XXI Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg Estendido 2021)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXI Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg Estendido 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbseg_estendido.2021.17333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Cross-Site Scripting (XSS) is still a significant threat to web applications. By combining Convolutional Neural Networks (CNN) with Long ShortTerm Memory (LSTM) techniques, researchers have developed a deep learning system called 3C-LSTM that achieves upwards of 99.4% accuracy when predicting whether a new URL corresponds to a benign locator or an XSS attack. This paper improves on 3C-LSTM by proposing different network architectures and validation strategies and identifying the optimal structure for a more efficient, yet similarly accurate, version of 3C-LSTM. The authors identify larger batch sizes, smaller inputs, and cross-validation removal as modifications to achieve a speedup of around 3.9 times in the training step.