The tallest column problem: New first integrals and estimates

IF 1 4区 工程技术 Q4 MECHANICS
Teodor M. Atanackovic
{"title":"The tallest column problem: New first integrals and estimates","authors":"Teodor M. Atanackovic","doi":"10.1016/j.crme.2019.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>We analyze the problem of finding the shape of the tallest column. For the system of equations that determine the optimal shape we construct a variational principle and two new first integrals. From the first integrals we are able to determine, analytically, the size of the cross-sectional area of the optimal column at the bottom, as well as the corresponding bending moment and curvature of the elastic line. Our result for critical load is compared with the results obtained by other methods.</p></div>","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"347 9","pages":"Pages 626-631"},"PeriodicalIF":1.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crme.2019.09.001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631072119301366","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze the problem of finding the shape of the tallest column. For the system of equations that determine the optimal shape we construct a variational principle and two new first integrals. From the first integrals we are able to determine, analytically, the size of the cross-sectional area of the optimal column at the bottom, as well as the corresponding bending moment and curvature of the elastic line. Our result for critical load is compared with the results obtained by other methods.

最高列问题:新的第一积分和估计
我们分析找出最高柱的形状的问题。对于确定最优形状的方程组,我们构造了一个变分原理和两个新的一等积分。从第一个积分中,我们可以解析地确定底部最优柱的横截面积大小,以及相应的弯矩和弹性线的曲率。并与其他方法得到的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Comptes Rendus Mecanique
Comptes Rendus Mecanique 物理-力学
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信