Semantic Image Synthesis via Location Aware Generative Adversarial Network

Jiawei Xu, R. Liu, Jing Dong, Pengfei Yi, Wanshu Fan, D. Zhou
{"title":"Semantic Image Synthesis via Location Aware Generative Adversarial Network","authors":"Jiawei Xu, R. Liu, Jing Dong, Pengfei Yi, Wanshu Fan, D. Zhou","doi":"10.1109/MSN57253.2022.00128","DOIUrl":null,"url":null,"abstract":"Semantic image synthesis aims to synthesize photo-realistic images through the given semantic segmentation masks. Most existing models use conditional batch normalization (CBN) to regulate normalization activation by spatially varying modulation parameters. It can prevent semantic information from being eliminated during normalization. But the modulation parameters in CBN lack location constraint, resulting in the lack of structural information in the synthetic image. And CBN is highly dependent on the batch size. To address these limitations, we propose location aware conditional group normalization (LACGN) and construct a location aware generative adversarial network (LAGAN) based on this method. LACGN can learn spatial location aware information in a weakly supervised manner that relies on the current image synthesis process to guide transformations spatially. It allows the synthetic image to have more structural information and detailed features. At the same time, group normalization(GN) replace the traditional BN to eliminate the dependence on batch size. Extensive experiments show that LAGAN is better than other methods.","PeriodicalId":114459,"journal":{"name":"2022 18th International Conference on Mobility, Sensing and Networking (MSN)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th International Conference on Mobility, Sensing and Networking (MSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSN57253.2022.00128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic image synthesis aims to synthesize photo-realistic images through the given semantic segmentation masks. Most existing models use conditional batch normalization (CBN) to regulate normalization activation by spatially varying modulation parameters. It can prevent semantic information from being eliminated during normalization. But the modulation parameters in CBN lack location constraint, resulting in the lack of structural information in the synthetic image. And CBN is highly dependent on the batch size. To address these limitations, we propose location aware conditional group normalization (LACGN) and construct a location aware generative adversarial network (LAGAN) based on this method. LACGN can learn spatial location aware information in a weakly supervised manner that relies on the current image synthesis process to guide transformations spatially. It allows the synthetic image to have more structural information and detailed features. At the same time, group normalization(GN) replace the traditional BN to eliminate the dependence on batch size. Extensive experiments show that LAGAN is better than other methods.
基于位置感知生成对抗网络的语义图像合成
语义图像合成的目的是通过给定的语义分割掩码合成逼真的图像。大多数现有模型使用条件批归一化(CBN)通过空间变化的调制参数来调节归一化激活。它可以防止语义信息在规范化过程中被消除。但是CBN中的调制参数缺乏位置约束,导致合成图像中缺少结构信息。CBN高度依赖于批量大小。为了解决这些局限性,我们提出了位置感知条件群归一化(LACGN)方法,并在此基础上构建了位置感知生成对抗网络(LAGAN)。LACGN可以以弱监督的方式学习空间位置感知信息,依赖于当前图像合成过程来指导空间转换。它使合成图像具有更多的结构信息和细节特征。同时,群体归一化(group normalization, GN)取代了传统的群体归一化(BN),消除了对批量大小的依赖。大量的实验表明,LAGAN算法优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信