GovdeTurk: A Novel Turkish Natural Language Processing Tool for Stemming, Morphological Labelling and Verb Negation

{"title":"GovdeTurk: A Novel Turkish Natural Language Processing Tool for Stemming, Morphological Labelling and Verb Negation","authors":"","doi":"10.34028/iajit/18/2/3","DOIUrl":null,"url":null,"abstract":"GovdeTurk is a tool for stemming, morphological labeling and verb negation for Turkish language. We designed comprehensive finite automata to represent Turkish grammar rules. Based on these automata, GovdeTurk finds the stem of the word by removing the inflectional suffixes in a longest match strategy. Levenshtein Distance is used to correct spelling errors that may occur during suffix removal. Morphological labeling identifies the functionality of a given token. Nine different dictionaries are constructed for each specific word type. These dictionaries are used in the stemming and morphological labeling. Verb negation module is developed for lexicon based sentiment analysis. GovdeTurk is tested on a dataset of one million words. The results are compared with Zemberek and Turkish Snowball Algorithm. While the closest competitor, Zemberek, in the stemming step has an accuracy of 80%, GovdeTurk gives 97.3% of accuracy. Morphological labeling accuracy of GovdeTurk is 93.6%. With outperforming results, our model becomes foremost among its competitors","PeriodicalId":161392,"journal":{"name":"The International Arab Journal of Information Technology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Arab Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/18/2/3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

GovdeTurk is a tool for stemming, morphological labeling and verb negation for Turkish language. We designed comprehensive finite automata to represent Turkish grammar rules. Based on these automata, GovdeTurk finds the stem of the word by removing the inflectional suffixes in a longest match strategy. Levenshtein Distance is used to correct spelling errors that may occur during suffix removal. Morphological labeling identifies the functionality of a given token. Nine different dictionaries are constructed for each specific word type. These dictionaries are used in the stemming and morphological labeling. Verb negation module is developed for lexicon based sentiment analysis. GovdeTurk is tested on a dataset of one million words. The results are compared with Zemberek and Turkish Snowball Algorithm. While the closest competitor, Zemberek, in the stemming step has an accuracy of 80%, GovdeTurk gives 97.3% of accuracy. Morphological labeling accuracy of GovdeTurk is 93.6%. With outperforming results, our model becomes foremost among its competitors
一个新颖的土耳其语自然语言处理工具,用于词干提取,形态标记和动词否定
GovdeTurk是一个土耳其语词干提取、词形标注和动词否定工具。我们设计了全面的有限自动机来表示土耳其语法规则。基于这些自动机,GovdeTurk通过在最长匹配策略中去除屈折后缀来找到单词的词干。Levenshtein Distance用于纠正后缀删除过程中可能出现的拼写错误。形态标记识别给定标记的功能。为每个特定的单词类型构建了9个不同的字典。这些词典用于词干提取和词法标注。针对基于词汇的情感分析,开发了动词否定模块。GovdeTurk在100万个单词的数据集上进行了测试。结果与Zemberek算法和土耳其雪球算法进行了比较。虽然最接近的竞争对手Zemberek在词干步骤中的准确率为80%,但GovdeTurk的准确率为97.3%。godeturk的形态学标注准确率为93.6%。我们的模型表现优异,在竞争对手中名列前茅
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信