Sample Augmentation for Classification of Schizophrenia Patients and Healthy Controls Using ICA of fMRI Data and Convolutional Neural Networks

Yan-Wei Niu, Qiuhua Lin, Yue Qiu, Li-Dan Kuang, V. Calhoun
{"title":"Sample Augmentation for Classification of Schizophrenia Patients and Healthy Controls Using ICA of fMRI Data and Convolutional Neural Networks","authors":"Yan-Wei Niu, Qiuhua Lin, Yue Qiu, Li-Dan Kuang, V. Calhoun","doi":"10.1109/ICICIP47338.2019.9012169","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNN) have exhibited great success in image classification. The application of CNN to classification of patients with brain disorders and healthy controls is also promising using functional magnetic resonance imaging (fMRI) data. However, the shortage of the number of subjects is a challenge for training CNN. Spatial maps separated from the fMRI data by independent component analysis (ICA) can provide a solution to this problem within an ICA-CNN framework. As such, we propose three strategies for both prior to and post ICA sample augmentation in the ICA-CNN framework. More precisely, we propose to increase the number of samples by performing spatial smoothing and band-pass filtering on the observed fMRI data before ICA, and spatial smoothing on the spatial maps after ICA. We evaluate the proposed methods using 82 resting-state fMRI datasets including 42 Schizophrenia patients and 40 healthy controls. The spatial map of the default mode network is used for classification, and each data augmentation is constrained to have the same numbers of samples for a fair comparison. The results show a 2%~15% increase in an average accuracy compared to the existing multiple-model-order method when adopting each of the proposed sample augmentation strategies. The spatial smoothing on the spatial maps is the most accurate among the three proposed methods. When using a combination of the proposed spatial smoothing on the spatial maps with the multiple-model-order method, the average accuracy increases above 90%.","PeriodicalId":431872,"journal":{"name":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP47338.2019.9012169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Convolutional neural networks (CNN) have exhibited great success in image classification. The application of CNN to classification of patients with brain disorders and healthy controls is also promising using functional magnetic resonance imaging (fMRI) data. However, the shortage of the number of subjects is a challenge for training CNN. Spatial maps separated from the fMRI data by independent component analysis (ICA) can provide a solution to this problem within an ICA-CNN framework. As such, we propose three strategies for both prior to and post ICA sample augmentation in the ICA-CNN framework. More precisely, we propose to increase the number of samples by performing spatial smoothing and band-pass filtering on the observed fMRI data before ICA, and spatial smoothing on the spatial maps after ICA. We evaluate the proposed methods using 82 resting-state fMRI datasets including 42 Schizophrenia patients and 40 healthy controls. The spatial map of the default mode network is used for classification, and each data augmentation is constrained to have the same numbers of samples for a fair comparison. The results show a 2%~15% increase in an average accuracy compared to the existing multiple-model-order method when adopting each of the proposed sample augmentation strategies. The spatial smoothing on the spatial maps is the most accurate among the three proposed methods. When using a combination of the proposed spatial smoothing on the spatial maps with the multiple-model-order method, the average accuracy increases above 90%.
基于功能磁共振成像数据和卷积神经网络的样本增强在精神分裂症患者和健康对照分类中的应用
卷积神经网络(CNN)在图像分类方面取得了巨大的成功。利用功能磁共振成像(fMRI)数据,将CNN应用于脑疾病患者和健康对照组的分类也很有前景。然而,科目数量的短缺是训练CNN的一个挑战。通过独立分量分析(ICA)从fMRI数据中分离出空间图,可以在ICA- cnn框架内解决这一问题。因此,我们在ICA- cnn框架中提出了ICA之前和之后样本增强的三种策略。更准确地说,我们建议通过在ICA之前对观察到的fMRI数据进行空间平滑和带通滤波,并在ICA之后对空间图进行空间平滑来增加样本数量。我们使用包括42名精神分裂症患者和40名健康对照在内的82个静息状态fMRI数据集来评估所提出的方法。默认模式网络的空间图用于分类,并且每个数据增强都被限制为具有相同数量的样本以进行公平的比较。结果表明,采用每一种样本增强策略时,平均精度比现有的多模型阶方法提高2%~15%。在这三种方法中,空间映射的空间平滑是最精确的。将所提出的空间平滑方法与多模型阶方法结合使用时,平均精度提高到90%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信