PowerPrep: A power management proposal for user-facing datacenter workloads

V. Govindaraj, Sumitha George, M. Kandemir, J. Sampson, N. Vijaykrishnan
{"title":"PowerPrep: A power management proposal for user-facing datacenter workloads","authors":"V. Govindaraj, Sumitha George, M. Kandemir, J. Sampson, N. Vijaykrishnan","doi":"10.1109/nas51552.2021.9605364","DOIUrl":null,"url":null,"abstract":"Modern data center applications are user facing/latency critical. Our work analyzes the characteristics of such applications i.e., high idleness, unpredictable CPU usage, and high sensitivity to CPU performance. In spite of such execution characteristics, datacenter operators disable sleep states to optimize performance. Deep-sleep states hurt performance mainly due to: a) high wake-latency and b) cache warm-up after exiting deep-sleep. To address these challenges, we quantify three necessary characteristics required to realize deep-sleep states in datacenter applications: a) low wake-latency, b) low resident power, and c) selective retention of cache-state. Using these observations, we show how emerging technological advances can be leveraged to improve the energy efficiency of latency-critical datacenter workloads.","PeriodicalId":135930,"journal":{"name":"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/nas51552.2021.9605364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern data center applications are user facing/latency critical. Our work analyzes the characteristics of such applications i.e., high idleness, unpredictable CPU usage, and high sensitivity to CPU performance. In spite of such execution characteristics, datacenter operators disable sleep states to optimize performance. Deep-sleep states hurt performance mainly due to: a) high wake-latency and b) cache warm-up after exiting deep-sleep. To address these challenges, we quantify three necessary characteristics required to realize deep-sleep states in datacenter applications: a) low wake-latency, b) low resident power, and c) selective retention of cache-state. Using these observations, we show how emerging technological advances can be leveraged to improve the energy efficiency of latency-critical datacenter workloads.
PowerPrep:面向用户的数据中心工作负载的电源管理建议
现代数据中心应用程序是面向用户/延迟关键的。我们的工作分析了这类应用程序的特点,即高空闲、不可预测的CPU使用率和对CPU性能的高灵敏度。尽管有这样的执行特性,数据中心操作员还是禁用休眠状态来优化性能。深度睡眠状态对性能的影响主要是由于:a)高唤醒延迟和b)退出深度睡眠后的缓存预热。为了应对这些挑战,我们量化了在数据中心应用中实现深度睡眠状态所需的三个必要特征:a)低唤醒延迟,b)低驻留功率,以及c)缓存状态的选择性保留。通过这些观察,我们将展示如何利用新兴技术进步来提高延迟关键型数据中心工作负载的能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信