Pseudorandomness for Read-Once Formulas

Andrej Bogdanov, Periklis A. Papakonstantinou, Andrew Wan
{"title":"Pseudorandomness for Read-Once Formulas","authors":"Andrej Bogdanov, Periklis A. Papakonstantinou, Andrew Wan","doi":"10.1109/FOCS.2011.57","DOIUrl":null,"url":null,"abstract":"We give an explicit construction of a pseudorandom generator for read-once formulas whose inputs can be read in arbitrary order. For formulas in n inputs and arbitrary gates of fan-in at most d = O(n/ log n), the pseudorandom generator uses (1 - O(1))n bits of randomness and produces an output that looks 2-O(n)-pseudorandom to all such formulas. Our analysis is based on the following lemma. Let P=M z + e, where M is the parity-check matrix of a sufficiently good binary error-correcting code of constant rate, z is a random string, e is a small-bias distribution, and all operations are modulo 2. Then for every pair of functions f, g : {0, 1}n/2?{0, 1} and every equipartition (I,J) of [n], the distribution P is pseudorandom for the pair (f (x|I ), g(x|J )), where x|I and x|J denote the restriction of x to the coordinates in I and J, respectively. More generally, our result applies to read-once branching programs of bounded width with arbitrary ordering of the inputs. We show that such branching programs are more powerful distinguishers than those that read their inputs in sequential order: There exist (explicit) pseudorandom distributions that separate these two types of branching programs.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We give an explicit construction of a pseudorandom generator for read-once formulas whose inputs can be read in arbitrary order. For formulas in n inputs and arbitrary gates of fan-in at most d = O(n/ log n), the pseudorandom generator uses (1 - O(1))n bits of randomness and produces an output that looks 2-O(n)-pseudorandom to all such formulas. Our analysis is based on the following lemma. Let P=M z + e, where M is the parity-check matrix of a sufficiently good binary error-correcting code of constant rate, z is a random string, e is a small-bias distribution, and all operations are modulo 2. Then for every pair of functions f, g : {0, 1}n/2?{0, 1} and every equipartition (I,J) of [n], the distribution P is pseudorandom for the pair (f (x|I ), g(x|J )), where x|I and x|J denote the restriction of x to the coordinates in I and J, respectively. More generally, our result applies to read-once branching programs of bounded width with arbitrary ordering of the inputs. We show that such branching programs are more powerful distinguishers than those that read their inputs in sequential order: There exist (explicit) pseudorandom distributions that separate these two types of branching programs.
一次读取公式的伪随机性
对于输入可以按任意顺序读取的一次性读取公式,我们给出了一个伪随机生成器的显式构造。对于有n个输入的公式和最多d = O(n/ log n)的任意扇入门,伪随机生成器使用(1 -O(1))n位随机性,并产生一个看起来像2-O(n)-伪随机的输出。我们的分析基于以下引理。设P=M z + e,其中M是一个足够好的恒速率二进制纠错码的奇偶校验矩阵,z是一个随机字符串,e是一个小偏差分布,所有运算都取模2。那么对于每一对函数f, g: {0,1}n/2?{0,1}和[n]的每一个均分(I,J),对于(f (x|I), g(x|J))对分布P是伪随机的,其中x|I和x|J分别表示x对I和J中的坐标的限制。更一般地说,我们的结果适用于具有任意输入顺序的有限宽度的只读一次分支程序。我们展示了这样的分支程序比那些按顺序读取输入的程序更强大的区别:存在(显式的)伪随机分布,将这两种类型的分支程序分开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信