Feature Selection and Reduction for Batik Image Retrieval

H. Fahmi, Remmy A. M. Zen, H. Sanabila, Ida Nurhaida, A. M. Arymurthy
{"title":"Feature Selection and Reduction for Batik Image Retrieval","authors":"H. Fahmi, Remmy A. M. Zen, H. Sanabila, Ida Nurhaida, A. M. Arymurthy","doi":"10.1145/3033288.3033327","DOIUrl":null,"url":null,"abstract":"Batik is the fabric which is truly unique to Indonesia. Batik image retrieval is the research area which focuses on image processing and image retrieving based on its characteristics. This study investigated the performance of the feature selection and reduction on the batik retrieval process. The feature employed in this experiment is the combination of four feature extraction methods, which are Gabor filter, log-Gabor filter, GLCM, and LBP. SFFS methods is used to carry out the selection of features, meanwhile, PCA is used to perform the reduction feature. Based on the experiment, PCA can increase the precision about 17%. Meanwhile, SFFS can improve the execution time 1800 times faster.","PeriodicalId":253625,"journal":{"name":"International Conference on Network, Communication and Computing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Network, Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3033288.3033327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Batik is the fabric which is truly unique to Indonesia. Batik image retrieval is the research area which focuses on image processing and image retrieving based on its characteristics. This study investigated the performance of the feature selection and reduction on the batik retrieval process. The feature employed in this experiment is the combination of four feature extraction methods, which are Gabor filter, log-Gabor filter, GLCM, and LBP. SFFS methods is used to carry out the selection of features, meanwhile, PCA is used to perform the reduction feature. Based on the experiment, PCA can increase the precision about 17%. Meanwhile, SFFS can improve the execution time 1800 times faster.
蜡染图像检索的特征选择与约简
蜡染是印尼独有的织物。蜡染图像检索是蜡染图像处理和基于其特点进行图像检索的研究领域。本研究考察了特征选择与约简在蜡染图像检索过程中的性能。本实验采用的特征是Gabor filter、log-Gabor filter、GLCM和LBP四种特征提取方法的组合。使用SFFS方法进行特征选择,同时使用PCA进行约简特征。实验结果表明,主成分分析的准确率可提高17%左右。同时,SFFS可以将执行时间提高1800倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信