AN APPROACH TO SELECT AN ARTIFICIAL NEURAL NETWORK ARCHITECTURE TO APPROXIMATE THE DEPENDENCE OF SURFACE WAVE PHASE VELOCITY ON AN EARTH ELASTIC MODEL

A. Yablokov, A. Serdyukov
{"title":"AN APPROACH TO SELECT AN ARTIFICIAL NEURAL NETWORK ARCHITECTURE TO APPROXIMATE THE DEPENDENCE OF SURFACE WAVE PHASE VELOCITY ON AN EARTH ELASTIC MODEL","authors":"A. Yablokov, A. Serdyukov","doi":"10.25205/978-5-4437-1251-2-91-94","DOIUrl":null,"url":null,"abstract":"The paper is dedicated to the development of an approach for tuning the architecture and hyperparameters of a fully connected multilayer artificial neural network used to solve the problem of restoring one-dimensional velocity models of the shear wave of the upper part of the geological section by inverting the dispersion curves of the frequency dependence of the phase velocities of the surface wave. The approach is developed using a statistical analysis of errors distributions in determining the parameters of one-dimensional velocity models of the earth, constructed from the results of numerical studies. The developed approach is universal and can be used to solve similar issues.","PeriodicalId":203470,"journal":{"name":"Trofimuk Readings - 2021: Proceedings of the All-Russian Youth Scientific Conference with the Participation of Foreign Scientists","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trofimuk Readings - 2021: Proceedings of the All-Russian Youth Scientific Conference with the Participation of Foreign Scientists","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25205/978-5-4437-1251-2-91-94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is dedicated to the development of an approach for tuning the architecture and hyperparameters of a fully connected multilayer artificial neural network used to solve the problem of restoring one-dimensional velocity models of the shear wave of the upper part of the geological section by inverting the dispersion curves of the frequency dependence of the phase velocities of the surface wave. The approach is developed using a statistical analysis of errors distributions in determining the parameters of one-dimensional velocity models of the earth, constructed from the results of numerical studies. The developed approach is universal and can be used to solve similar issues.
选择一种人工神经网络结构来近似地表波相速度对地球弹性模型的依赖关系
本文致力于开发一种调整全连接多层人工神经网络的结构和超参数的方法,该网络用于通过反演表面波相速度的频散曲线来恢复地质剖面上部剪切波的一维速度模型。该方法是根据数值研究的结果对确定地球一维速度模型参数的误差分布进行统计分析而发展起来的。所开发的方法具有通用性,可用于解决类似问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信