Статистические подходы к анализу и моделированию сезонности в демографических данных

Е Д Копнова, Л. А. Родионова
{"title":"Статистические подходы к анализу и моделированию сезонности в демографических данных","authors":"Е Д Копнова, Л. А. Родионова","doi":"10.17323/DEMREVIEW.V6I2.9874","DOIUrl":null,"url":null,"abstract":"Согласно майскому  указу Президента (2018 г.), в число национальных целей и стратегических задач развития РФ на период до 2024 г. входят «обеспечение устойчивого естественного роста численности населения РФ и повышение ожидаемой продолжительности жизни до 78 лет». Возросшая необходимость мониторинга текущей демографической ситуации, изучение структуры демографических показателей, пристальное внимание научного сообщества к реализации национальных целей обусловили выбор темы настоящего исследования. \nВ работе исследовались проблемы моделирования сезонности демографических показателей РФ (числа рождений, числа умерших, младенческой смертности, числа заключенных браков) по ежемесячным данным Росстата за период 2007-2018 гг. Зарубежные исследования показали, что, наряду с традиционными демографическими методами, ARIMA-модели дают хорошие результаты при прогнозировании демографических показателей (численности населения, уровня рождаемости и смертности, продолжительности жизни населения). Использование статистического подхода на основе SARIMA-моделей в данной работе позволило получить адекватные модели с хорошими статистическими и прогностическими свойствами. Стационарность процессов с учетом сезонности анализировали на основе HEGY-теста. Исследуемые в работе показатели имели ряд особенностей, которые были учтены при моделировании. Ряды числа рождений и числа умерших имели второй и первый порядки интегрируемости соответственно и содержали детерминированную сезонность, ряд числа заключенных браков имел первый порядок обычной и сезонной интегрируемости, ряд младенческой смертности не содержал сезонность, что было подтверждено на основе анализа автокорреляционной функции и периодограммы. Для анализируемых показателей в работе были построены точечные и интервальные оценки прогноза на 2019 г. Для сравнения качества прогнозирования SARIMA-моделей в работе были оценены также сезонные модели Хольта-Уинтерса.","PeriodicalId":145499,"journal":{"name":"Демографическое обозрение","volume":"479 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Демографическое обозрение","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17323/DEMREVIEW.V6I2.9874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Согласно майскому  указу Президента (2018 г.), в число национальных целей и стратегических задач развития РФ на период до 2024 г. входят «обеспечение устойчивого естественного роста численности населения РФ и повышение ожидаемой продолжительности жизни до 78 лет». Возросшая необходимость мониторинга текущей демографической ситуации, изучение структуры демографических показателей, пристальное внимание научного сообщества к реализации национальных целей обусловили выбор темы настоящего исследования. В работе исследовались проблемы моделирования сезонности демографических показателей РФ (числа рождений, числа умерших, младенческой смертности, числа заключенных браков) по ежемесячным данным Росстата за период 2007-2018 гг. Зарубежные исследования показали, что, наряду с традиционными демографическими методами, ARIMA-модели дают хорошие результаты при прогнозировании демографических показателей (численности населения, уровня рождаемости и смертности, продолжительности жизни населения). Использование статистического подхода на основе SARIMA-моделей в данной работе позволило получить адекватные модели с хорошими статистическими и прогностическими свойствами. Стационарность процессов с учетом сезонности анализировали на основе HEGY-теста. Исследуемые в работе показатели имели ряд особенностей, которые были учтены при моделировании. Ряды числа рождений и числа умерших имели второй и первый порядки интегрируемости соответственно и содержали детерминированную сезонность, ряд числа заключенных браков имел первый порядок обычной и сезонной интегрируемости, ряд младенческой смертности не содержал сезонность, что было подтверждено на основе анализа автокорреляционной функции и периодограммы. Для анализируемых показателей в работе были построены точечные и интервальные оценки прогноза на 2019 г. Для сравнения качества прогнозирования SARIMA-моделей в работе были оценены также сезонные модели Хольта-Уинтерса.
人口数据分析和季节性模型的统计方法
根据总统的5月法令(2018年),俄罗斯联邦在2024年以前的国家目标和战略发展目标包括“确保俄罗斯人口持续自然增长,提高预期寿命到78年”。对当前人口状况的监测、对人口结构的研究、科学界对实现国家目标的密切关注,都是对本研究主题的选择。探索问题建模工作人口指标rf季(死者人数出生婴儿死亡率,统计局的婚姻数据每月)年间,囚犯人数2007 - 2018年海外研究表明,与传统的人口统计学模型方法给出好的结果与预测人口指标(人口出生率和死亡率、人口预期寿命)。使用基于SARIMA模型的统计方法可以产生足够的模型,具有良好的统计和预测特性。基于HEGY测试,对季节性过程的稳定性进行了分析。工作中研究的指标有一些特性,在建模时被考虑在内。出生人数和死亡人数分别有第二和第一次序和第一次序,结婚率为第一次序,结婚率为第一次序和季节性,婴儿死亡率不包含季节性,根据对自相关功能和周期的分析证实了这一点。为了分析工作指标,对2019年的预测进行了精确和间歇的评估,以比较霍尔特-温特斯季节性模型对SARIMA模型的预测质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信