Determining dissipativity for nonlinear systems from noisy data using Taylor polynomial approximation

Tim Martin, F. Allgöwer
{"title":"Determining dissipativity for nonlinear systems from noisy data using Taylor polynomial approximation","authors":"Tim Martin, F. Allgöwer","doi":"10.23919/ACC53348.2022.9867806","DOIUrl":null,"url":null,"abstract":"In the literature of data-driven dissipativity verification, many approaches are restricted to linear systems or require knowledge on the basis functions of the nonlinear system dynamics. To overcome these limitations, this work proposes based on Taylor approximation a novel polynomial representation of nonlinear systems which can be learned from noise-corrupted measurements. Due to the polynomial characterization and the inclusion of the approximation error into the analysis, we can determine dissipativity properties for nonlinear dynamical systems from noisy data with rigorous guarantees, without explicitly identifying a model, and using computationally tractable sum of squares optimization.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In the literature of data-driven dissipativity verification, many approaches are restricted to linear systems or require knowledge on the basis functions of the nonlinear system dynamics. To overcome these limitations, this work proposes based on Taylor approximation a novel polynomial representation of nonlinear systems which can be learned from noise-corrupted measurements. Due to the polynomial characterization and the inclusion of the approximation error into the analysis, we can determine dissipativity properties for nonlinear dynamical systems from noisy data with rigorous guarantees, without explicitly identifying a model, and using computationally tractable sum of squares optimization.
用泰勒多项式近似从噪声数据中确定非线性系统的耗散率
在数据驱动耗散性验证的文献中,许多方法仅限于线性系统或需要了解非线性系统动力学的基础函数。为了克服这些限制,本工作提出了一种基于泰勒近似的非线性系统的新的多项式表示,可以从噪声损坏的测量中学习。由于多项式表征和将近似误差包含在分析中,我们可以在严格保证的情况下从噪声数据确定非线性动力系统的耗散特性,而无需明确识别模型,并使用计算上易于处理的平方和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信