Vulkan Vision: Ray Tracing Workload Characterization using Automatic Graphics Instrumentation

D. Pankratz, Tyler Nowicki, Ahmed Eltantawy, J. N. Amaral
{"title":"Vulkan Vision: Ray Tracing Workload Characterization using Automatic Graphics Instrumentation","authors":"D. Pankratz, Tyler Nowicki, Ahmed Eltantawy, J. N. Amaral","doi":"10.1109/CGO51591.2021.9370320","DOIUrl":null,"url":null,"abstract":"While there are mature performance monitoring, profiling and instrumentation tools to help understanding the dynamic behaviour of general-purpose GPU applications, the abstract programming models of graphics applications have limited the development of such tools for graphics. This paper introduces Vulkan Vision (V- Vision), a framework for collecting detailed GPU execution data from Vulkan applications to guide hardware-informed improvements. A core contribution of V- Vision is providing out-of-the-box data collection for capturing complete dynamic warp and thread execution traces. V- Vision also provides analyses for the follow purposes: identifying and visualizing application hotspots to guide optimization, characterizing application behaviour and estimating the effect of architectural modifications. This paper demonstrates the potential for these analyses in applications that utilize the recent ray-tracing extension in Vulkan and describes new insights about the applications and the underlying hardware.","PeriodicalId":275062,"journal":{"name":"2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGO51591.2021.9370320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

While there are mature performance monitoring, profiling and instrumentation tools to help understanding the dynamic behaviour of general-purpose GPU applications, the abstract programming models of graphics applications have limited the development of such tools for graphics. This paper introduces Vulkan Vision (V- Vision), a framework for collecting detailed GPU execution data from Vulkan applications to guide hardware-informed improvements. A core contribution of V- Vision is providing out-of-the-box data collection for capturing complete dynamic warp and thread execution traces. V- Vision also provides analyses for the follow purposes: identifying and visualizing application hotspots to guide optimization, characterizing application behaviour and estimating the effect of architectural modifications. This paper demonstrates the potential for these analyses in applications that utilize the recent ray-tracing extension in Vulkan and describes new insights about the applications and the underlying hardware.
Vulkan Vision:使用自动图形仪器的光线追踪工作负载表征
虽然有成熟的性能监控、分析和仪表工具来帮助理解通用GPU应用程序的动态行为,但图形应用程序的抽象编程模型限制了此类图形工具的发展。本文介绍了Vulkan Vision (V- Vision),这是一个从Vulkan应用程序中收集详细GPU执行数据的框架,用于指导硬件改进。V- Vision的核心贡献是提供开箱即用的数据收集,用于捕获完整的动态经纱和线程执行痕迹。V- Vision还为以下目的提供分析:识别和可视化应用程序热点以指导优化,描述应用程序行为和估计架构修改的效果。本文展示了这些分析在利用Vulkan中最近的光线追踪扩展的应用程序中的潜力,并描述了关于应用程序和底层硬件的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信