Multi-resolution approach to three-dimensional method-of-moments problems

F. Vipiana, M. Francavilla, F. Andriulli, P. Pirinoli, G. Vecchi
{"title":"Multi-resolution approach to three-dimensional method-of-moments problems","authors":"F. Vipiana, M. Francavilla, F. Andriulli, P. Pirinoli, G. Vecchi","doi":"10.1109/CEM.2009.5228115","DOIUrl":null,"url":null,"abstract":"Objectives, expectations and difficulties associated to the use of multi-resolution (MR) constructs in integral equation, method of moments (MoM) are reviewed and put in a contemporary perspective. A MR approach is presented that can be applied to any mesh without any constrain on the structure topology. The so-obtained MR basis positively affects the spectrum of the MoM matrix, affording an efficient (multiplicative) preconditioner. The reasons of this are explained in terms of the dual spatial-spectral resolution of the MR basis.","PeriodicalId":416029,"journal":{"name":"2009 Computational Electromagnetics International Workshop","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Computational Electromagnetics International Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEM.2009.5228115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Objectives, expectations and difficulties associated to the use of multi-resolution (MR) constructs in integral equation, method of moments (MoM) are reviewed and put in a contemporary perspective. A MR approach is presented that can be applied to any mesh without any constrain on the structure topology. The so-obtained MR basis positively affects the spectrum of the MoM matrix, affording an efficient (multiplicative) preconditioner. The reasons of this are explained in terms of the dual spatial-spectral resolution of the MR basis.
三维矩量法问题的多分辨率方法
目标,期望和困难相关的使用多分辨率(MR)结构的积分方程,矩法(MoM)进行审查,并提出了一个当代的观点。提出了一种不受结构拓扑约束、可应用于任意网格的磁流变方法。这样得到的MR基正影响MoM矩阵的频谱,提供了一个有效的(乘法)预条件。从MR基的双空间光谱分辨率解释了这一现象的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信