Recursive Utility and Thompson Aggregators I: Constructive Existence Theory for the Koopmans Equation

R. Becker, J. P. Rincón-Zapatero
{"title":"Recursive Utility and Thompson Aggregators I: Constructive Existence Theory for the Koopmans Equation","authors":"R. Becker, J. P. Rincón-Zapatero","doi":"10.2139/ssrn.3228079","DOIUrl":null,"url":null,"abstract":"We reconsider the theory of Thompson aggregators proposed by Marinacci and Montrucchio [34]. We prove a variant of their Recovery Theorem establishing the existence of extremal solutions to the Koopmans equation. We apply the constructive Tarski-Kantorovich Fixed Point Theorem rather than the nonconstructive Tarski Theorem employed in [34]. We also obtain additional properties of the extremal solutions. The Koopmans operator possesses two distinct order continuity properties. Each is sufficient for the application of the Tarski-Kantorovich Theorem. One version builds on the order properties of the underlying vector spaces for utility functions and commodities. The second form is topological. The Koopmans operator is continuous in Scott's [40] induced topology. The least fixed point is constructed with either continuity hypothesis by the partial sum method. This solution is a concave function whenever the Thompson aggregator is concave and also norm continuous on the interior of its effective domain.","PeriodicalId":299310,"journal":{"name":"Econometrics: Mathematical Methods & Programming eJournal","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Mathematical Methods & Programming eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3228079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We reconsider the theory of Thompson aggregators proposed by Marinacci and Montrucchio [34]. We prove a variant of their Recovery Theorem establishing the existence of extremal solutions to the Koopmans equation. We apply the constructive Tarski-Kantorovich Fixed Point Theorem rather than the nonconstructive Tarski Theorem employed in [34]. We also obtain additional properties of the extremal solutions. The Koopmans operator possesses two distinct order continuity properties. Each is sufficient for the application of the Tarski-Kantorovich Theorem. One version builds on the order properties of the underlying vector spaces for utility functions and commodities. The second form is topological. The Koopmans operator is continuous in Scott's [40] induced topology. The least fixed point is constructed with either continuity hypothesis by the partial sum method. This solution is a concave function whenever the Thompson aggregator is concave and also norm continuous on the interior of its effective domain.
递归效用与汤普森聚合器I: Koopmans方程的构造存在论
我们重新考虑Marinacci和Montrucchio[34]提出的Thompson聚合器理论。我们证明了他们的恢复定理的一个变体,建立了库普曼方程的极值解的存在性。我们采用构造性的Tarski- kantorovich不动点定理,而不是文献[34]中使用的非构造性的Tarski定理。我们也得到了极值解的附加性质。Koopmans算子具有两个不同的序连续性性质。对于Tarski-Kantorovich定理的应用,每一个都是充分的。一个版本建立在效用函数和商品的底层向量空间的顺序属性上。第二种形式是拓扑形式。在Scott[40]诱导拓扑中,Koopmans算子是连续的。用部分和法分别用连续性假设构造最小不动点。该解是一个凹函数,只要汤普森聚合器在其有效区域内是凹且范数连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信