Attribute-oriented induction using domain generalization graphs

Howard J. Hamilton, Robert J. Hilderman, N. Cercone
{"title":"Attribute-oriented induction using domain generalization graphs","authors":"Howard J. Hamilton, Robert J. Hilderman, N. Cercone","doi":"10.1109/TAI.1996.560458","DOIUrl":null,"url":null,"abstract":"Attribute-oriented induction summarizes the information in a relational database by repeatedly replacing specific attribute values with more general concepts according to user-defined concept hierarchies. We show how domain generalization graphs can be constructed from multiple concept hierarchies associated with an attribute, describe how these graphs can be used to control the generalization of a set of attributes, and present the Multi-Attribute Generalization algorithm for attribute-oriented induction using domain generalization graphs. Based upon a generate-and-test approach, the algorithm generates all possible combinations of nodes from the domain generalization graphs associated with the individual attributes, to produce all possible generalized relations for the set of attributes. We rant the interestingness of the resulting generalized relations using measures based upon relative entropy and variance. Our experiments show that these measures provide a basis for analyzing summary data from relational databases. Variance appears more useful because it tends to rank the less complex generalized relations (i.e., those with few attributes and/or few tuples) as more interesting.","PeriodicalId":209171,"journal":{"name":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1996.560458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Attribute-oriented induction summarizes the information in a relational database by repeatedly replacing specific attribute values with more general concepts according to user-defined concept hierarchies. We show how domain generalization graphs can be constructed from multiple concept hierarchies associated with an attribute, describe how these graphs can be used to control the generalization of a set of attributes, and present the Multi-Attribute Generalization algorithm for attribute-oriented induction using domain generalization graphs. Based upon a generate-and-test approach, the algorithm generates all possible combinations of nodes from the domain generalization graphs associated with the individual attributes, to produce all possible generalized relations for the set of attributes. We rant the interestingness of the resulting generalized relations using measures based upon relative entropy and variance. Our experiments show that these measures provide a basis for analyzing summary data from relational databases. Variance appears more useful because it tends to rank the less complex generalized relations (i.e., those with few attributes and/or few tuples) as more interesting.
使用领域泛化图的面向属性的归纳
面向属性的归纳法根据用户定义的概念层次结构,用更一般的概念反复替换特定的属性值,从而总结关系数据库中的信息。我们展示了如何从与一个属性相关联的多个概念层次结构中构造域概化图,描述了如何使用这些图来控制一组属性的概化,并提出了使用域概化图进行面向属性归纳的多属性概化算法。该算法基于生成-测试方法,从与单个属性相关联的域泛化图中生成所有可能的节点组合,以生成属性集的所有可能的泛化关系。我们使用基于相对熵和方差的度量来度量所得到的广义关系的有趣性。我们的实验表明,这些度量为分析来自关系数据库的汇总数据提供了基础。方差似乎更有用,因为它倾向于将不太复杂的广义关系(即那些具有很少属性和/或很少元组的关系)排序为更有趣的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信