A Single Channel EEG-based All AASM Sleep Stages Classifier for Neurodegenerative Disorder

S. Zamin, Muhammad Awais Bin Altaf, Wala Saadeh
{"title":"A Single Channel EEG-based All AASM Sleep Stages Classifier for Neurodegenerative Disorder","authors":"S. Zamin, Muhammad Awais Bin Altaf, Wala Saadeh","doi":"10.1109/BIOCAS.2019.8918738","DOIUrl":null,"url":null,"abstract":"Sleep stages classification is an effective tool for the diagnosis and treatment of neurodegenerative disorders. This paper presents the first non-invasive electroencephalograph (EEG)-based processor for classifying all the sleep stages implemented on hardware. It utilizes a single EEG channel and multi-machine-learning classifiers to form a home-based polysomnography. These multiple one-vs-one binary Linear Support Vector Machine (LSVM) classifiers are combined to classify all the sleep stages using two features only. To implement the desired features efficiently on hardware, an exponent-eliminate (EE) Split-Radix 256-point FFT is proposed that decreases the area by 60% compared to the conventional design by avoiding the majority of complex floating-point multiplications and divisions. The proposed all sleep stages classification system is implemented using 180nm CMOS process and experimentally verified using FPGA based on the EEG recordings of 197 patients from Physionet Sleep database. It utilizes a miniaturized active area of 0.32mm2 and achieves a Cohen Kappa score of 0.847 while consuming 0.7µJ/classification.","PeriodicalId":222264,"journal":{"name":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2019.8918738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Sleep stages classification is an effective tool for the diagnosis and treatment of neurodegenerative disorders. This paper presents the first non-invasive electroencephalograph (EEG)-based processor for classifying all the sleep stages implemented on hardware. It utilizes a single EEG channel and multi-machine-learning classifiers to form a home-based polysomnography. These multiple one-vs-one binary Linear Support Vector Machine (LSVM) classifiers are combined to classify all the sleep stages using two features only. To implement the desired features efficiently on hardware, an exponent-eliminate (EE) Split-Radix 256-point FFT is proposed that decreases the area by 60% compared to the conventional design by avoiding the majority of complex floating-point multiplications and divisions. The proposed all sleep stages classification system is implemented using 180nm CMOS process and experimentally verified using FPGA based on the EEG recordings of 197 patients from Physionet Sleep database. It utilizes a miniaturized active area of 0.32mm2 and achieves a Cohen Kappa score of 0.847 while consuming 0.7µJ/classification.
基于单通道脑电图的神经退行性疾病全AASM睡眠阶段分类器
睡眠阶段分类是诊断和治疗神经退行性疾病的有效工具。本文提出了第一个基于无创脑电图(EEG)的处理器,用于在硬件上实现对所有睡眠阶段的分类。它利用单个EEG通道和多机器学习分类器形成基于家庭的多导睡眠图。这些多个一对一二进制线性支持向量机(LSVM)分类器被组合起来,仅使用两个特征对所有睡眠阶段进行分类。为了在硬件上有效地实现所需的特性,提出了一种指数消除(EE)分裂基数256点FFT,通过避免大多数复杂的浮点乘法和除法,与传统设计相比,该FFT的面积减少了60%。基于Physionet sleep数据库中197例患者的脑电图记录,采用180nm CMOS工艺实现了所提出的全睡眠阶段分类系统,并利用FPGA进行了实验验证。它利用了0.32mm2的小型化活动面积,在消耗0.7µJ/分类的同时实现了0.847的Cohen Kappa评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信