High-speed double precision computation of nonlinear functions

V. Jain, L. Lin
{"title":"High-speed double precision computation of nonlinear functions","authors":"V. Jain, L. Lin","doi":"10.1109/ARITH.1995.465370","DOIUrl":null,"url":null,"abstract":"High-speed coprocessors for computing nonlinear functions are important for advanced scientific computing as well as real-time image processing. In this paper we develop an efficient interpolative approach to such coprocessors. Performed on suitable subintervals of the range of interest, our interpolation which uses third degree polynomial is adequate for many elementary functions of interest with double precision mantissas. Our method requires only one major multiplication, two minor multiplications and a few additions. The minor multiplications are for the second and third degree terms, and their significant bits are much fewer than those of the first degree term. This leads to a very fast and efficient VLSI architecture for such coprocessors. It appears that polynomial based interpolation can yield considerable benefits over previously used approaches, when execution time and silicon area are considered. Further, it is possible to combine the computation of multiple functions on a single chip, with most of the resources on the chip shared for several functions.<<ETX>>","PeriodicalId":332829,"journal":{"name":"Proceedings of the 12th Symposium on Computer Arithmetic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1995.465370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

High-speed coprocessors for computing nonlinear functions are important for advanced scientific computing as well as real-time image processing. In this paper we develop an efficient interpolative approach to such coprocessors. Performed on suitable subintervals of the range of interest, our interpolation which uses third degree polynomial is adequate for many elementary functions of interest with double precision mantissas. Our method requires only one major multiplication, two minor multiplications and a few additions. The minor multiplications are for the second and third degree terms, and their significant bits are much fewer than those of the first degree term. This leads to a very fast and efficient VLSI architecture for such coprocessors. It appears that polynomial based interpolation can yield considerable benefits over previously used approaches, when execution time and silicon area are considered. Further, it is possible to combine the computation of multiple functions on a single chip, with most of the resources on the chip shared for several functions.<>
非线性函数的高速双精度计算
用于计算非线性函数的高速协处理器对于先进的科学计算和实时图像处理非常重要。在本文中,我们开发了一种有效的插值方法来处理这种协处理器。利用三次多项式在感兴趣范围的适当子区间上进行插值,可以满足许多具有双精度尾数的感兴趣初等函数。我们的方法只需要一个大乘法,两个小乘法和一些加法。次要乘法是针对二次和三次项的,它们的有效位比一次项的有效位少得多。这为这种协处理器带来了非常快速和高效的VLSI架构。当考虑到执行时间和硅面积时,基于多项式的插值似乎比以前使用的方法产生了相当大的好处。此外,可以在单个芯片上组合多个功能的计算,并且芯片上的大部分资源用于多个功能共享。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信