Shayok Chakraborty, V. Balasubramanian, S. Panchanathan
{"title":"Dynamic Batch Size Selection for Batch Mode Active Learning in Biometrics","authors":"Shayok Chakraborty, V. Balasubramanian, S. Panchanathan","doi":"10.1109/ICMLA.2010.10","DOIUrl":null,"url":null,"abstract":"Robust biometric recognition is of paramount importance in security and surveillance applications. In face based biometric systems, data is usually collected using a video camera with high frame rate and thus the captured data has high redundancy. Selecting the appropriate instances from this data to update a classification model, is a significant, yet valuable challenge. Active learning methods have gained popularity in identifying the salient and exemplar data instances from superfluous sets. Batch mode active learning schemes attempt to select a batch of samples simultaneously rather than updating the model after selecting every single data point. Existing work on batch mode active learning assume a fixed batch size, which is not a practical assumption in biometric recognition applications. In this paper, we propose a novel framework to dynamically select the batch size using clustering based unsupervised learning techniques. We also present a batch mode active learning strategy specially suited to handle the high redundancy in biometric datasets. The results obtained on the challenging VidTIMIT and MOBIO datasets corroborate the superiority of dynamic batch size selection over static batch size and also certify the potential of the proposed active learning scheme in being used for real world biometric recognition applications.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Robust biometric recognition is of paramount importance in security and surveillance applications. In face based biometric systems, data is usually collected using a video camera with high frame rate and thus the captured data has high redundancy. Selecting the appropriate instances from this data to update a classification model, is a significant, yet valuable challenge. Active learning methods have gained popularity in identifying the salient and exemplar data instances from superfluous sets. Batch mode active learning schemes attempt to select a batch of samples simultaneously rather than updating the model after selecting every single data point. Existing work on batch mode active learning assume a fixed batch size, which is not a practical assumption in biometric recognition applications. In this paper, we propose a novel framework to dynamically select the batch size using clustering based unsupervised learning techniques. We also present a batch mode active learning strategy specially suited to handle the high redundancy in biometric datasets. The results obtained on the challenging VidTIMIT and MOBIO datasets corroborate the superiority of dynamic batch size selection over static batch size and also certify the potential of the proposed active learning scheme in being used for real world biometric recognition applications.