Numerical methods for optimal control of heat exchangers

J. Burns, E. Cliff
{"title":"Numerical methods for optimal control of heat exchangers","authors":"J. Burns, E. Cliff","doi":"10.1109/ACC.2014.6858959","DOIUrl":null,"url":null,"abstract":"Heat exchangers are thermal fluid systems that are basic components in many industrial devices. Heat exchangers are modeled by coupled hyperbolic and parabolic partial differential equations and the structure of these equations depends on the geometry of the heat exchanger. In this paper we consider approximation methods for optimal control of a counter flow heat exchanger. We show the system is well-posed in standard product spaces and develop a numerical scheme based on averaging approximations (AVE scheme). Numerical examples are provided to illustrate the applicability of this scheme to both simulation and optimal control. We also discuss other schemes based on finite elements and suggest future areas of research.","PeriodicalId":369729,"journal":{"name":"2014 American Control Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2014.6858959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Heat exchangers are thermal fluid systems that are basic components in many industrial devices. Heat exchangers are modeled by coupled hyperbolic and parabolic partial differential equations and the structure of these equations depends on the geometry of the heat exchanger. In this paper we consider approximation methods for optimal control of a counter flow heat exchanger. We show the system is well-posed in standard product spaces and develop a numerical scheme based on averaging approximations (AVE scheme). Numerical examples are provided to illustrate the applicability of this scheme to both simulation and optimal control. We also discuss other schemes based on finite elements and suggest future areas of research.
换热器最优控制的数值方法
热交换器是热流体系统,是许多工业设备的基本部件。换热器采用双曲型和抛物型耦合偏微分方程进行建模,这些方程的结构取决于换热器的几何形状。本文研究了逆流式换热器最优控制的近似方法。我们证明了系统在标准积空间中是适定的,并开发了一个基于平均近似的数值方案(AVE方案)。数值算例说明了该方案在仿真和最优控制中的适用性。我们还讨论了基于有限元的其他方案,并提出了未来的研究领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信