MORSE-TYPE INDICES OF TWO-DIMENSIONAL MINIMAL SURFACES IN R3 AND H3

A. Tuzhilin
{"title":"MORSE-TYPE INDICES OF TWO-DIMENSIONAL MINIMAL SURFACES IN R3 AND H3","authors":"A. Tuzhilin","doi":"10.1070/IM1992V038N03ABEH002215","DOIUrl":null,"url":null,"abstract":"The Morse-type index of a compact p-dimensional minimal submanifold is the index of the second variation of the p-dimensional volume functional. In this paper a definition is given for the index of a noncompact minimal submanifold, and the indices of some two-dimensional minimal surfaces in three-dimensional Euclidean space R3 and in three-dimensional Lobachevsky space H3 are computed. In particular, the indices of all the classic minimal surfaces in R3 are computed: the catenoid, Enneper surfaces, Scherk surfaces, Richmond surfaces, and others. The indices of spherical catenoids in H3 are computed, which completes the computation of the indices of catenoids in H3 (hyperbolic and parabolic catenoids have zero index, that is, they are stable). It is also proved that for a one-parameter family of helicoids in H3 the helicoids are stable for certain values of the parameter.","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1992V038N03ABEH002215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The Morse-type index of a compact p-dimensional minimal submanifold is the index of the second variation of the p-dimensional volume functional. In this paper a definition is given for the index of a noncompact minimal submanifold, and the indices of some two-dimensional minimal surfaces in three-dimensional Euclidean space R3 and in three-dimensional Lobachevsky space H3 are computed. In particular, the indices of all the classic minimal surfaces in R3 are computed: the catenoid, Enneper surfaces, Scherk surfaces, Richmond surfaces, and others. The indices of spherical catenoids in H3 are computed, which completes the computation of the indices of catenoids in H3 (hyperbolic and parabolic catenoids have zero index, that is, they are stable). It is also proved that for a one-parameter family of helicoids in H3 the helicoids are stable for certain values of the parameter.
r3和h3中二维最小曲面的莫尔斯型指标
紧化p维极小子流形的莫尔斯型指标是该p维体积泛函的二阶变分的指标。本文给出了非紧极小子流形的指标的定义,并计算了三维欧几里德空间R3和三维罗巴切夫斯基空间H3中一些二维极小曲面的指标。特别地,计算了R3中所有经典极小曲面的指标:catenoid曲面、Enneper曲面、Scherk曲面、Richmond曲面等。计算了H3中球面链状体的指标,完成了H3中链状体指标的计算(双曲和抛物线链状体指标为零,即稳定)。同时证明了对于H3中的单参数螺旋体族,在一定的参数值下,螺旋体是稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信