Face Recognition Based on Local Feature Analysis

Zhiming Qian, Peng Su, Dan Xu
{"title":"Face Recognition Based on Local Feature Analysis","authors":"Zhiming Qian, Peng Su, Dan Xu","doi":"10.1109/ISCSCT.2008.65","DOIUrl":null,"url":null,"abstract":"This paper presents a new face recognition method based on the analysis of local features. Firstly, we can get the images of magnitude by means of analyzing face images with the Gabor wavelets. Secondly, the magnitude images are divided into blocks, then principle components analysis (PCA) could be directly used to all the blocks to construct the feature space. Finally, all the blocks of images are projected to the feature space and get the face feature vectors. By counting and analyzing the feature vector, we get the recognition results. The experimental results show that this method uses the advantages of Gabor wavelets and local feature analysis (LFA), has a good recognition capability.","PeriodicalId":228533,"journal":{"name":"2008 International Symposium on Computer Science and Computational Technology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Computer Science and Computational Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSCT.2008.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a new face recognition method based on the analysis of local features. Firstly, we can get the images of magnitude by means of analyzing face images with the Gabor wavelets. Secondly, the magnitude images are divided into blocks, then principle components analysis (PCA) could be directly used to all the blocks to construct the feature space. Finally, all the blocks of images are projected to the feature space and get the face feature vectors. By counting and analyzing the feature vector, we get the recognition results. The experimental results show that this method uses the advantages of Gabor wavelets and local feature analysis (LFA), has a good recognition capability.
基于局部特征分析的人脸识别
提出了一种基于局部特征分析的人脸识别新方法。首先,利用Gabor小波对人脸图像进行分析,得到幅值图像。其次,对幅值图像进行分块,然后直接对所有分块进行主成分分析(PCA),构建特征空间;最后,将所有图像块投影到特征空间中,得到人脸特征向量。通过对特征向量的计数和分析,得到识别结果。实验结果表明,该方法利用Gabor小波和局部特征分析(LFA)的优点,具有良好的识别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信