Model Predictive Analysis for AutonomicWorkflow Management in Large-scale Scientific Computing Environments

S. Nordstrom, A. Dubey, T. Keskinpala, R. Datta, S. Neema, T. Bapty
{"title":"Model Predictive Analysis for AutonomicWorkflow Management in Large-scale Scientific Computing Environments","authors":"S. Nordstrom, A. Dubey, T. Keskinpala, R. Datta, S. Neema, T. Bapty","doi":"10.1109/EASE.2007.18","DOIUrl":null,"url":null,"abstract":"In large scale scientific computing, proper planning and management of computational resources lead to higher system utilizations and increased scientific productivity. Scientists are increasingly leveraging the use of business process management techniques and workflow management tools to balance the needs of the scientific analyses with the availability of computational resources. However, the advancements in productivity from execution of workflows in a large scale computing environments are often thwarted by runtime resource failures. This paper presents our initial work toward autonomic model based fault analysis in workflow based environments","PeriodicalId":239972,"journal":{"name":"Fourth IEEE International Workshop on Engineering of Autonomic and Autonomous Systems (EASe'07)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth IEEE International Workshop on Engineering of Autonomic and Autonomous Systems (EASe'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EASE.2007.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In large scale scientific computing, proper planning and management of computational resources lead to higher system utilizations and increased scientific productivity. Scientists are increasingly leveraging the use of business process management techniques and workflow management tools to balance the needs of the scientific analyses with the availability of computational resources. However, the advancements in productivity from execution of workflows in a large scale computing environments are often thwarted by runtime resource failures. This paper presents our initial work toward autonomic model based fault analysis in workflow based environments
大规模科学计算环境下自主工作流管理的模型预测分析
在大规模科学计算中,合理规划和管理计算资源可以提高系统利用率,提高科学生产力。科学家们越来越多地利用业务流程管理技术和工作流管理工具来平衡科学分析的需求和计算资源的可用性。然而,在大规模计算环境中执行工作流所带来的生产力进步常常受到运行时资源故障的阻碍。本文介绍了我们在基于工作流的环境中基于自主模型的故障分析方面的初步工作
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信