A Hybrid Texture Analysis System based on Non-Linear & Oriented Kernels, Particle Swarm Optimization, and kNN vs. Support Vector Machines

Stefanie Peters, A. König
{"title":"A Hybrid Texture Analysis System based on Non-Linear & Oriented Kernels, Particle Swarm Optimization, and kNN vs. Support Vector Machines","authors":"Stefanie Peters, A. König","doi":"10.1109/HIS.2007.18","DOIUrl":null,"url":null,"abstract":"This paper expands our previous activities on automated texture analysis applying optimized nonlinear and oriented kernels. The operator parameterization is achieved using particle swarm optimization (PSO). The sensitivity of the voting k-nearest-neighbor (kNN) classifier used in the optimization process and for texture classification is explored in respect of the number of used neighbors. Additionally, support vector machines (SVM) with the reputation to procure better results are applied. Contrary to a recommended grid search for the parameter selection, the adaptation of the free SVM parameters is included into the global optimization process with PSO. Our work was tested with benchmark and application data from leather inspection.","PeriodicalId":359991,"journal":{"name":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2007.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper expands our previous activities on automated texture analysis applying optimized nonlinear and oriented kernels. The operator parameterization is achieved using particle swarm optimization (PSO). The sensitivity of the voting k-nearest-neighbor (kNN) classifier used in the optimization process and for texture classification is explored in respect of the number of used neighbors. Additionally, support vector machines (SVM) with the reputation to procure better results are applied. Contrary to a recommended grid search for the parameter selection, the adaptation of the free SVM parameters is included into the global optimization process with PSO. Our work was tested with benchmark and application data from leather inspection.
基于非线性和定向核、粒子群优化和kNN与支持向量机的混合纹理分析系统
本文利用优化的非线性和定向核扩展了我们以前在自动纹理分析方面的工作。利用粒子群算法(PSO)实现算子参数化。探讨了投票k近邻(kNN)分类器在优化过程和纹理分类中使用的邻居数量的敏感性。此外,支持向量机(SVM)的声誉,以获得更好的结果应用。与推荐的网格搜索参数选择不同,PSO将自由支持向量机参数的自适应纳入全局优化过程。我们的工作用皮革检验的基准和应用数据进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信