Comparison of shift-and-add & bispectrum image reconstruction methods for astronomy in the near-infrared

V. Klückers, N. Wooder, J. Dainty, A. Longmore
{"title":"Comparison of shift-and-add & bispectrum image reconstruction methods for astronomy in the near-infrared","authors":"V. Klückers, N. Wooder, J. Dainty, A. Longmore","doi":"10.1364/JOSAA.13.001577","DOIUrl":null,"url":null,"abstract":"It is well known that atmospheric turbulence limits the resolution available to ground based astronomical observations to 0.5-1.0 arcseconds in the infrared. The advent of speckle interferometry in the 1970’s [1] has allowed the recovery of diffraction limited Fourier modulus information of astronomical objects of interest to be attempted routinely. A number of methods have since been proposed to obtain diffraction limited Fourier phase information, and thus image recovery. In the visible, where D/r\n o\n is large, it is now generally accepted that phase recovery from the average image bispectrum (or equivalently the triple correlation) appears to be the most successful [2] [3] [4].","PeriodicalId":184407,"journal":{"name":"Signal Recovery and Synthesis","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Recovery and Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/JOSAA.13.001577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

It is well known that atmospheric turbulence limits the resolution available to ground based astronomical observations to 0.5-1.0 arcseconds in the infrared. The advent of speckle interferometry in the 1970’s [1] has allowed the recovery of diffraction limited Fourier modulus information of astronomical objects of interest to be attempted routinely. A number of methods have since been proposed to obtain diffraction limited Fourier phase information, and thus image recovery. In the visible, where D/r o is large, it is now generally accepted that phase recovery from the average image bispectrum (or equivalently the triple correlation) appears to be the most successful [2] [3] [4].
近红外天文中移位加和双光谱图像重建方法的比较
众所周知,大气湍流将地面天文观测的红外分辨率限制在0.5-1.0弧秒。在20世纪70年代,散斑干涉测量法的出现使得对天文物体衍射极限傅立叶模量信息的恢复成为常规尝试。此后提出了许多方法来获得衍射限制傅里叶相位信息,从而获得图像恢复。在可见光中,在D/r较大的地方,现在普遍认为,从平均图像双谱(或等效的三重相关)中恢复相位似乎是最成功的[2][3][4]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信