{"title":"A 3D Non-Stationary GBSM for Mobile-to-Mobile Underwater Acoustic Communication Channels","authors":"Yihan Wang, Chengxiang Wang, Xiuming Zhu, Yubei He, Hengtai Chang, Jian Sun, Wensheng Zhang","doi":"10.1109/iccc52777.2021.9580250","DOIUrl":null,"url":null,"abstract":"This paper proposes a three dimensional (3D) nonstationary geometry-based stochastic model (GBSM) for mobile-to-mobile (M2M) underwater acoustic (UWA) communication channels. In this proposed model, the border reverberations are modeled as a series of specular reflection paths and the volume reverberations are approximated as the twin-cluster birth-death model. Moreover, this model supports dual mobility both of transmitter (Tx) and receiver (Rx) in the 3D body of water. Based on the analytical model, the corresponding channel statistical properties such as the time-frequency correlation function (TF-CF), power delay profile (PDP), average delay, and root mean square delay spread (RMS- DS) are derived. The results show a good fit between the analytical model and the simulation model. Finally, the reliability of the model is validated by comparing the statistical characteristics with the measurement results.","PeriodicalId":425118,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccc52777.2021.9580250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a three dimensional (3D) nonstationary geometry-based stochastic model (GBSM) for mobile-to-mobile (M2M) underwater acoustic (UWA) communication channels. In this proposed model, the border reverberations are modeled as a series of specular reflection paths and the volume reverberations are approximated as the twin-cluster birth-death model. Moreover, this model supports dual mobility both of transmitter (Tx) and receiver (Rx) in the 3D body of water. Based on the analytical model, the corresponding channel statistical properties such as the time-frequency correlation function (TF-CF), power delay profile (PDP), average delay, and root mean square delay spread (RMS- DS) are derived. The results show a good fit between the analytical model and the simulation model. Finally, the reliability of the model is validated by comparing the statistical characteristics with the measurement results.