Detection of blue whale vocalisations using a temporal-domain convolutional neural network

Bryan Sagredo, Sonia Espanol-Jim'enez, Felipe A. Tobar
{"title":"Detection of blue whale vocalisations using a temporal-domain convolutional neural network","authors":"Bryan Sagredo, Sonia Espanol-Jim'enez, Felipe A. Tobar","doi":"10.1109/LA-CCI48322.2021.9769846","DOIUrl":null,"url":null,"abstract":"We present a framework for detecting blue whale vocalisations from acoustic submarine recordings. The proposed methodology comprises three stages: i) a preprocessing step where the audio recordings are conditioned through normalisation, filtering, and denoising; ii) a label-propagation mechanism to ensure the consistency of the annotations of the whale vocalisations, and iii) a convolutional neural network that receives audio samples. Based on 34 real-world submarine recordings (28 for training and 6 for testing) we obtained promising performance indicators including an Accuracy of 85.4% and a Recall of 93.5%. Furthermore, even for the cases where our detector did not match the ground-truth labels, a visual inspection validates the ability of our approach to detect possible parts of whale calls unlabelled as such due to not being complete calls.","PeriodicalId":431041,"journal":{"name":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI48322.2021.9769846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a framework for detecting blue whale vocalisations from acoustic submarine recordings. The proposed methodology comprises three stages: i) a preprocessing step where the audio recordings are conditioned through normalisation, filtering, and denoising; ii) a label-propagation mechanism to ensure the consistency of the annotations of the whale vocalisations, and iii) a convolutional neural network that receives audio samples. Based on 34 real-world submarine recordings (28 for training and 6 for testing) we obtained promising performance indicators including an Accuracy of 85.4% and a Recall of 93.5%. Furthermore, even for the cases where our detector did not match the ground-truth labels, a visual inspection validates the ability of our approach to detect possible parts of whale calls unlabelled as such due to not being complete calls.
使用时域卷积神经网络检测蓝鲸发声
我们提出了一个从声学海底记录中检测蓝鲸发声的框架。所提出的方法包括三个阶段:i)预处理步骤,其中音频记录通过标准化,滤波和去噪进行调节;Ii)一个标签传播机制,以确保鲸鱼发声注释的一致性,iii)一个接收音频样本的卷积神经网络。基于34个真实世界的潜艇记录(28个用于训练,6个用于测试),我们获得了有希望的性能指标,包括准确率为85.4%,召回率为93.5%。此外,即使在我们的检测器不匹配基本事实标签的情况下,目视检查也验证了我们的方法能够检测到由于不完整的呼叫而未标记的鲸鱼呼叫的可能部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信