Deep-learning seismic facies on state-of-the-art CNN architectures

J. Dramsch, M. Lüthje
{"title":"Deep-learning seismic facies on state-of-the-art CNN architectures","authors":"J. Dramsch, M. Lüthje","doi":"10.1190/SEGAM2018-2996783.1","DOIUrl":null,"url":null,"abstract":"In the 1950s neural networks started as a simple direct connection of several nodes in an input layer to several nodes in an output layer (Widrow and Lehr, 1990). In geophysics this puts us to the introduction of seismic trace stacking (Yilmaz, 2001). In 1989 the first idea of a convolutional neural network was born (Lecun, 1989) and back-propagation was formalized as an error-propagation mechanism (Rumelhart et al., 1988). In 2012 the paper (Krizhevsky et al., 2012) propelled the field of deep learning forward implementing essential components, namely GPU training, ReLu activation functions (Dahl et al., 2013) and dropout (Srivastava et al., 2014). They outperformed previous models in the ImageNet challenge (Deng et al., 2009) by almost halving the prediction error. Waldeland and Solberg (2016) showed that neural networks can be used to classify salt diapirs in 3D seismic data. Charles Rutherford Ildstad (2017) generalized this work to nD and beyond two classes of salt and ”else”.","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEG Technical Program Expanded Abstracts 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/SEGAM2018-2996783.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

Abstract

In the 1950s neural networks started as a simple direct connection of several nodes in an input layer to several nodes in an output layer (Widrow and Lehr, 1990). In geophysics this puts us to the introduction of seismic trace stacking (Yilmaz, 2001). In 1989 the first idea of a convolutional neural network was born (Lecun, 1989) and back-propagation was formalized as an error-propagation mechanism (Rumelhart et al., 1988). In 2012 the paper (Krizhevsky et al., 2012) propelled the field of deep learning forward implementing essential components, namely GPU training, ReLu activation functions (Dahl et al., 2013) and dropout (Srivastava et al., 2014). They outperformed previous models in the ImageNet challenge (Deng et al., 2009) by almost halving the prediction error. Waldeland and Solberg (2016) showed that neural networks can be used to classify salt diapirs in 3D seismic data. Charles Rutherford Ildstad (2017) generalized this work to nD and beyond two classes of salt and ”else”.
在最先进的CNN架构上深度学习地震相
在20世纪50年代,神经网络开始作为输入层的几个节点与输出层的几个节点的简单直接连接(Widrow和Lehr, 1990)。在地球物理学中,这使我们引入了地震道叠加(Yilmaz, 2001)。1989年,卷积神经网络的第一个想法诞生了(Lecun, 1989),反向传播被形式化为一种错误传播机制(Rumelhart et al., 1988)。2012年,该论文(Krizhevsky et al., 2012)推动了深度学习领域向前发展,实现了基本组件,即GPU训练、ReLu激活函数(Dahl et al., 2013)和dropout (Srivastava et al., 2014)。它们在ImageNet挑战中的表现优于以前的模型(Deng et al., 2009),预测误差几乎减半。Waldeland and Solberg(2016)表明,神经网络可以用于对三维地震数据中的盐底辟进行分类。Charles Rutherford Ildstad(2017)将这项工作推广到nD和两类盐和“其他”之外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信