Deep Koopman Representation for Control over Images (DKRCI)

Philippe Laferrière, Samuel Laferrière, Steven Dahdah, J. Forbes, L. Paull
{"title":"Deep Koopman Representation for Control over Images (DKRCI)","authors":"Philippe Laferrière, Samuel Laferrière, Steven Dahdah, J. Forbes, L. Paull","doi":"10.1109/CRV52889.2021.00029","DOIUrl":null,"url":null,"abstract":"The Koopman operator provides a means to represent nonlinear systems as infinite dimensional linear systems in a lifted state space. This enables the application of linear control techniques to nonlinear systems. However, the choice of a finite number of lifting functions, or Koopman observables, is still an unresolved problem. Deep learning techniques have recently been used to jointly learn these lifting function along with the Koopman operator. However, these methods require knowledge of the system’s state space. In this paper, we present a method to learn a Koopman representation directly from images and control inputs. We then demonstrate our deep learning architecture on a cart-pole system with external inputs.","PeriodicalId":413697,"journal":{"name":"2021 18th Conference on Robots and Vision (CRV)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th Conference on Robots and Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV52889.2021.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Koopman operator provides a means to represent nonlinear systems as infinite dimensional linear systems in a lifted state space. This enables the application of linear control techniques to nonlinear systems. However, the choice of a finite number of lifting functions, or Koopman observables, is still an unresolved problem. Deep learning techniques have recently been used to jointly learn these lifting function along with the Koopman operator. However, these methods require knowledge of the system’s state space. In this paper, we present a method to learn a Koopman representation directly from images and control inputs. We then demonstrate our deep learning architecture on a cart-pole system with external inputs.
图像控制的深度Koopman表示(DKRCI)
库普曼算子提供了一种将非线性系统表示为提升状态空间中的无限维线性系统的方法。这使得线性控制技术可以应用于非线性系统。然而,有限数量的提升函数或库普曼观测值的选择仍然是一个未解决的问题。深度学习技术最近被用于与Koopman算子共同学习这些提升函数。然而,这些方法需要了解系统的状态空间。在本文中,我们提出了一种直接从图像和控制输入中学习库普曼表示的方法。然后,我们在带有外部输入的cart-pole系统上演示了我们的深度学习架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信