Automatic Segmentation of Liver Tumor Ultrasound Images Based on GGVF Snake

Dong Zhang, Jing Zhou, Yan Yang, Q. Qin
{"title":"Automatic Segmentation of Liver Tumor Ultrasound Images Based on GGVF Snake","authors":"Dong Zhang, Jing Zhou, Yan Yang, Q. Qin","doi":"10.1109/SOPO.2012.6270911","DOIUrl":null,"url":null,"abstract":"In this paper, an approach based on generalized gradient vector flow (GGVF) snake model is proposed for automatic segmentation of liver tumor ultrasound images. According to it the initial contour of GGVF snake can be generated automatically in stead of artificial appointment. The preprocess including anisotropic diffusion filtering and texture classification is implemented on ultrasound images, which ensures the initial contour close to the tumor's real boundaries. The edge map function of GGVF is also modified for obtaining better segmenting performance on ultrasound images. Experimental results show the approach is suitable and effective for segmentation of liver tumor in ultrasound images.","PeriodicalId":159850,"journal":{"name":"2012 Symposium on Photonics and Optoelectronics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Symposium on Photonics and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOPO.2012.6270911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, an approach based on generalized gradient vector flow (GGVF) snake model is proposed for automatic segmentation of liver tumor ultrasound images. According to it the initial contour of GGVF snake can be generated automatically in stead of artificial appointment. The preprocess including anisotropic diffusion filtering and texture classification is implemented on ultrasound images, which ensures the initial contour close to the tumor's real boundaries. The edge map function of GGVF is also modified for obtaining better segmenting performance on ultrasound images. Experimental results show the approach is suitable and effective for segmentation of liver tumor in ultrasound images.
基于GGVF Snake的肝脏肿瘤超声图像自动分割
本文提出了一种基于广义梯度矢量流(GGVF)蛇形模型的肝脏肿瘤超声图像自动分割方法。根据该算法,可以自动生成GGVF蛇形的初始轮廓,而无需人工预约。对超声图像进行各向异性扩散滤波和纹理分类预处理,保证初始轮廓接近肿瘤真实边界。为了获得更好的超声图像分割性能,还对GGVF的边缘映射函数进行了改进。实验结果表明,该方法适用于超声图像中肝脏肿瘤的分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信