Novel features for silhouette based gait recognition systems

Arihant Kochhar, Divyesh Gupta, M. Hanmandlu, S. Vasikarla
{"title":"Novel features for silhouette based gait recognition systems","authors":"Arihant Kochhar, Divyesh Gupta, M. Hanmandlu, S. Vasikarla","doi":"10.1109/AIPR.2012.6528205","DOIUrl":null,"url":null,"abstract":"This paper proposes certain features for human gait cycle detection and recognition. The features cover both the categories of holistic and model-based approaches for human gait recognition. A unique feature vector is formed from the spatial-temporal silhouettes and Support Vector Machine (SVM) classifier is used for the identification of individuals through their gait. The present work is concerned with the efficiency of the extracted features. Experimentation on the silhouette samples of publicly available CASIA database has given furnishes promising results.","PeriodicalId":406942,"journal":{"name":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2012.6528205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes certain features for human gait cycle detection and recognition. The features cover both the categories of holistic and model-based approaches for human gait recognition. A unique feature vector is formed from the spatial-temporal silhouettes and Support Vector Machine (SVM) classifier is used for the identification of individuals through their gait. The present work is concerned with the efficiency of the extracted features. Experimentation on the silhouette samples of publicly available CASIA database has given furnishes promising results.
基于轮廓的步态识别系统的新特征
本文提出了人体步态周期检测与识别的若干特征。这些特征涵盖了人类步态识别的整体方法和基于模型的方法。由时空轮廓形成独特的特征向量,并使用支持向量机分类器通过步态识别个体。目前的工作关注的是特征提取的效率。在公开的CASIA数据库的剪影样本上进行了实验,取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信