Issues of grid-cluster retrievals in swarm-based clustering

Swee Chuan Tan, K. Ting, S. Teng
{"title":"Issues of grid-cluster retrievals in swarm-based clustering","authors":"Swee Chuan Tan, K. Ting, S. Teng","doi":"10.1109/CEC.2008.4630845","DOIUrl":null,"url":null,"abstract":"One common approach in swarm-based clustering is to use agents to create a set of clusters on a two-dimensional grid, and then use an existing clustering method to retrieve the clusters on the grid. The second step, which we call grid-cluster retrieval, is an essential step to obtain an explicit partitioning of data. In this study, we highlight the issues in grid-cluster retrievals commonly neglected by researchers, and demonstrate the non-trivial difficulties involved. To tackle the issues, we then evaluate three methods: K-means, hierarchical clustering (Weighted Single-link) and density-based clustering (DBScan). Among the three methods, DBScan is the only method which has not been previously used for grid-cluster retrievals, yet it is shown to be the most suitable method in terms of effectiveness and efficiency.","PeriodicalId":328803,"journal":{"name":"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2008.4630845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One common approach in swarm-based clustering is to use agents to create a set of clusters on a two-dimensional grid, and then use an existing clustering method to retrieve the clusters on the grid. The second step, which we call grid-cluster retrieval, is an essential step to obtain an explicit partitioning of data. In this study, we highlight the issues in grid-cluster retrievals commonly neglected by researchers, and demonstrate the non-trivial difficulties involved. To tackle the issues, we then evaluate three methods: K-means, hierarchical clustering (Weighted Single-link) and density-based clustering (DBScan). Among the three methods, DBScan is the only method which has not been previously used for grid-cluster retrievals, yet it is shown to be the most suitable method in terms of effectiveness and efficiency.
基于群聚类的网格-聚类检索问题
在基于集群的聚类中,一种常见的方法是使用代理在二维网格上创建一组集群,然后使用现有的聚类方法检索网格上的集群。第二步,我们称之为网格-集群检索,是获得数据显式分区的关键步骤。在这项研究中,我们强调了网格-集群检索中通常被研究人员忽视的问题,并展示了涉及的非琐碎困难。为了解决这些问题,我们评估了三种方法:K-means、分层聚类(加权单链接)和基于密度的聚类(DBScan)。在这三种方法中,DBScan是唯一一种以前没有用于网格-集群检索的方法,但就有效性和效率而言,它被证明是最合适的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信