Euclidean input mapping in a N-tuple approximation network

A. Kolcz, N. Allinson
{"title":"Euclidean input mapping in a N-tuple approximation network","authors":"A. Kolcz, N. Allinson","doi":"10.1109/DSP.1994.379821","DOIUrl":null,"url":null,"abstract":"A type of the N-tuple neural architecture can be shown to perform function approximation based on local interpolation, similar that performed by RBF networks. Since the size and speed of operation in this implementation are independent of the training set size, it is attractive for practical adaptive solutions. However, the kernel function used by the network is non-Euclidean, which can cause performance losses for high-dimensional input data. The authors investigate methods for realising more isotropic kernel basis functions by use of special data encoding techniques.<<ETX>>","PeriodicalId":189083,"journal":{"name":"Proceedings of IEEE 6th Digital Signal Processing Workshop","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 6th Digital Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP.1994.379821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A type of the N-tuple neural architecture can be shown to perform function approximation based on local interpolation, similar that performed by RBF networks. Since the size and speed of operation in this implementation are independent of the training set size, it is attractive for practical adaptive solutions. However, the kernel function used by the network is non-Euclidean, which can cause performance losses for high-dimensional input data. The authors investigate methods for realising more isotropic kernel basis functions by use of special data encoding techniques.<>
n元组近似网络中的欧几里德输入映射
一种n元组神经结构可以显示为基于局部插值执行函数逼近,类似于RBF网络的执行。由于该实现中的操作大小和速度与训练集大小无关,因此对于实用的自适应解决方案具有吸引力。然而,网络使用的核函数是非欧几里得的,这可能会导致高维输入数据的性能损失。作者研究了利用特殊的数据编码技术实现更各向同性核基函数的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信