Hybrid intelligent fault diagnosis based on granular computing

Zhaowen Hou, Zhousuo Zhang
{"title":"Hybrid intelligent fault diagnosis based on granular computing","authors":"Zhaowen Hou, Zhousuo Zhang","doi":"10.1109/GRC.2009.5255127","DOIUrl":null,"url":null,"abstract":"To solve the problem of lacking hybrid modes and common algorithms in hybrid intelligent diagnosis, this paper presents a new approach to hybrid intelligent fault diagnosis of the mechanical equipment based on granular computing. The hybrid intelligent diagnosis model based on neighborhood rough set is constructed in different granular levels, and the results of support vector machines (SVMS) and artificial neural network (ANN) in granular levels are combined by criterion matrix algorithm as output of hybrid intelligent diagnosis. Finally, the proposed model is applied to fault diagnosis in roller bearings of high-speed locomotive. The applied results show that the classification accuracy of hybrid model reaches to 97.96%, which is 8.49% and 39.12% higher than the classification accuracy of SVMS and ANN respectively. It shows that the proposed model as a new common algorithm can reliably recognize different fault categories and effectively enhance robustness of the hybrid intelligent diagnosis model.","PeriodicalId":388774,"journal":{"name":"2009 IEEE International Conference on Granular Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2009.5255127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To solve the problem of lacking hybrid modes and common algorithms in hybrid intelligent diagnosis, this paper presents a new approach to hybrid intelligent fault diagnosis of the mechanical equipment based on granular computing. The hybrid intelligent diagnosis model based on neighborhood rough set is constructed in different granular levels, and the results of support vector machines (SVMS) and artificial neural network (ANN) in granular levels are combined by criterion matrix algorithm as output of hybrid intelligent diagnosis. Finally, the proposed model is applied to fault diagnosis in roller bearings of high-speed locomotive. The applied results show that the classification accuracy of hybrid model reaches to 97.96%, which is 8.49% and 39.12% higher than the classification accuracy of SVMS and ANN respectively. It shows that the proposed model as a new common algorithm can reliably recognize different fault categories and effectively enhance robustness of the hybrid intelligent diagnosis model.
基于颗粒计算的混合智能故障诊断
针对混合智能诊断缺乏混合模式和常用算法的问题,提出了一种基于颗粒计算的机械设备混合智能故障诊断新方法。构建了基于邻域粗糙集的混合智能诊断模型,并通过准则矩阵算法将支持向量机(SVMS)和人工神经网络(ANN)在颗粒水平上的结果结合起来作为混合智能诊断的输出。最后,将该模型应用于高速机车滚子轴承的故障诊断。应用结果表明,混合模型的分类准确率达到97.96%,比支持向量机和神经网络的分类准确率分别提高8.49%和39.12%。结果表明,该模型作为一种新的通用算法,能够可靠地识别不同类型的故障,有效地增强了混合智能诊断模型的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信