ImageNet Pre-trained CNNs for JPEG Steganalysis

Yassine Yousfi, Jan Butora, Eugene Khvedchenya, J. Fridrich
{"title":"ImageNet Pre-trained CNNs for JPEG Steganalysis","authors":"Yassine Yousfi, Jan Butora, Eugene Khvedchenya, J. Fridrich","doi":"10.1109/WIFS49906.2020.9360897","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate pre-trained computer-vision deep architectures, such as the EfficientNet, MixNet, and ResNet for steganalysis. These models pre-trained on ImageNet can be rather quickly refined for JPEG steganalysis while offering significantly better performance than CNNs designed purposely for steganalysis, such as the SRNet, trained from scratch. We show how different architectures compare on the ALASKA II dataset. We demonstrate that avoiding pooling/stride in the first layers enables better performance, as noticed by other top competitors, which aligns with the design choices of many CNNs designed for steganalysis. We also show how pre-trained computer-vision deep architectures perform on the ALASKA I dataset.","PeriodicalId":354881,"journal":{"name":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"SE-3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS49906.2020.9360897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

In this paper, we investigate pre-trained computer-vision deep architectures, such as the EfficientNet, MixNet, and ResNet for steganalysis. These models pre-trained on ImageNet can be rather quickly refined for JPEG steganalysis while offering significantly better performance than CNNs designed purposely for steganalysis, such as the SRNet, trained from scratch. We show how different architectures compare on the ALASKA II dataset. We demonstrate that avoiding pooling/stride in the first layers enables better performance, as noticed by other top competitors, which aligns with the design choices of many CNNs designed for steganalysis. We also show how pre-trained computer-vision deep architectures perform on the ALASKA I dataset.
ImageNet预训练cnn用于JPEG隐写分析
在本文中,我们研究了预训练的计算机视觉深度架构,如用于隐写分析的EfficientNet、MixNet和ResNet。这些在ImageNet上预先训练的模型可以相当快地为JPEG隐写分析进行改进,同时提供比专门为隐写分析设计的cnn(例如从头开始训练的SRNet)更好的性能。我们将展示不同的架构如何在ALASKA II数据集上进行比较。正如其他顶级竞争对手所注意到的那样,我们证明在第一层避免池化/跨步可以获得更好的性能,这与许多为隐写分析而设计的cnn的设计选择一致。我们还展示了预训练的计算机视觉深度架构如何在ALASKA I数据集上执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信