Theeksha Athoor Perumal, R. Ganti, R. D. Koilpillai, D. Jalihal, Venkatesh Ramaiyan, K. Takei
{"title":"Channel estimation in rotating polarization based wireless communication systems","authors":"Theeksha Athoor Perumal, R. Ganti, R. D. Koilpillai, D. Jalihal, Venkatesh Ramaiyan, K. Takei","doi":"10.1109/NCC.2016.7561179","DOIUrl":null,"url":null,"abstract":"In a slow fading/fixed environment, a deep fade might last for several symbol durations, and all the transmissions during such a deep fade become highly unreliable. Rotating polarization is an RF technique to artificially induce fading in a static environment, and thus reduce the chance of prolonged deep fades. However, this technique makes the channel vary at a high rate and hence increases the complexity of channel estimation. In this paper, we look at channel estimation in systems using rotating polarization. Drawing parallels from MIMO systems, we propose a technique for designing a training sequence that reduces the complexity of channel estimation while providing good performance in an induced fast fading environment. We analyse the performance of the least-squares and minimum mean square error channel estimation techniques with rotating polarization.","PeriodicalId":279637,"journal":{"name":"2016 Twenty Second National Conference on Communication (NCC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Twenty Second National Conference on Communication (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2016.7561179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In a slow fading/fixed environment, a deep fade might last for several symbol durations, and all the transmissions during such a deep fade become highly unreliable. Rotating polarization is an RF technique to artificially induce fading in a static environment, and thus reduce the chance of prolonged deep fades. However, this technique makes the channel vary at a high rate and hence increases the complexity of channel estimation. In this paper, we look at channel estimation in systems using rotating polarization. Drawing parallels from MIMO systems, we propose a technique for designing a training sequence that reduces the complexity of channel estimation while providing good performance in an induced fast fading environment. We analyse the performance of the least-squares and minimum mean square error channel estimation techniques with rotating polarization.